File size: 11,950 Bytes
db17632
 
 
 
 
 
 
 
 
 
 
 
 
 
c4e0055
db17632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4e0055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db17632
c4e0055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db17632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import csv
from functools import partial
from typing import List
import time

import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
import chromadb
from chromadb.config import Settings
from chromadb import Documents, EmbeddingFunction, Embeddings
from google import genai
from google.genai import types
from tqdm import tqdm
from google.genai.errors import ClientError


class GeminiEmbeddingFunction(EmbeddingFunction):
    def __init__(self, gemini_client: genai.Client, emb_model: str):
        self.gemini_client = gemini_client
        self.emb_model = emb_model

    def __call__(self, input_batch: List[Documents]) -> List[Embeddings]:
        gemini_out = self.gemini_client.models.embed_content(model=self.emb_model, contents=input_batch)
        embeddings = [e.values for e in gemini_out.embeddings]
        return embeddings


def create_or_get_chroma_db(
        gemini_client: genai.Client,
        emb_model: str,
        articles_md_root: str,
        file2url_path: str,
        db_root: str,
    ) -> chromadb.Collection:
    # Create the database root directory
    os.makedirs(db_root, exist_ok=True)

    # Initialize the Chroma client
    chroma_client = chromadb.PersistentClient(path=db_root, settings=Settings(anonymized_telemetry=False))
    # Attempt to retrieve the existing collection
    db = chroma_client.get_or_create_collection(name="Oura_Support_Faq",
                                                embedding_function=GeminiEmbeddingFunction(gemini_client, emb_model))
    # Check if the collection already exists
    if db.count() > 0:
        print(f"Collection already exists with {db.count()} documents.")
        return db

    # Load the filename2url mapping
    with open(file2url_path, 'r') as f:
        reader = csv.reader(f)
        rows = [row for row in reader]
        filename2url = {rows[1] + '.md': rows[0]  for rows in rows}
        filename2title = {rows[1] + '.md': rows[2]  for rows in rows}

    # Load and chunk the documents from the output directory
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        add_start_index=True,
        separators=["##", "\n\n", "\n", " ", ""],
    )
    splits = []
    for filename in os.listdir(articles_md_root):
        if filename.endswith('.md'):
            with open(os.path.join(articles_md_root, filename), 'r', encoding='utf-8') as f:
                content = f.read()
                meta = {'Source': f'[{filename2title[filename]}]({filename2url[filename]})',}
                chunks = splitter.create_documents([content], metadatas=[meta])
                splits.extend(chunks)

    # Extract documents, metadata, and IDs from the chunks
    documents = [chunk.page_content for chunk in splits]
    metadatas = [chunk.metadata for chunk in splits]
    ids = [f"id_{i}" for i in range(len(documents))]

    # Using batching to embed multiple documents at once, without calling the API too many times
    batch_size = 64
    # Iterate over the documents in batches
    for i in tqdm(range(0, len(documents), batch_size)):
        slice_batch = slice(i, i + batch_size)
        doc_batch, meta_batch, ids_batch = documents[slice_batch], metadatas[slice_batch], ids[slice_batch]
        # Add documents, embeddings, IDs, and metadata to the collection
        # using upsert to add new documents or update existing ones
        db.upsert(
            documents=doc_batch,
            ids=ids_batch,
            metadatas=meta_batch
        )
        time.sleep(2)  # Optional: sleep to avoid hitting API limits
    print(f"Added {len(documents)} documents to the database.")
    return db


def get_prompt_from_question(question: str, db: chromadb.Collection, n: int, verbose: bool = True) -> str:
    prompt_template = """
Context from Oura documentation/forums:"""
    result = db.query(query_texts=[question], n_results=n)
    passages = result['documents'][0]
    for p in range(len(passages)):
        sim = result['distances'][0][p]
        source = result['metadatas'][0][p]['Source']
        prompt_template += f"\n\nChunk {p}:\n"
        prompt_template += f"Similarity: {sim:.3f}\n"
        prompt_template += f"Source: {source}\n"
        prompt_template += passages[p]
    prompt_template += "\n\n" + f"User Question: {question}"
    prompt_template += "\n\n" + "Answer:"
    if verbose:
        print(prompt_template)
    return prompt_template

def chatbot_response(
        user_input: str,
        history: list,
        db: chromadb.Collection,
        llm_name: str,
        system_prompt: str,
        turns_to_keep: int,
        num_neighbors_per_query: int,
    ) -> str:
    # Add the user input to the conversation history
    # keeping only the last turns_to_keep turns
    history = history[-turns_to_keep:]
    conversation_history = "\n".join([f'User: {turn[0]}; Agent: {turn[1]}' for turn in history])
    try:
        prompt = get_prompt_from_question(user_input, db, num_neighbors_per_query)
        prompt = f"Previous turns: {conversation_history} \n\n New prompt: {prompt}"
        print('==========================================================================')
        print(prompt)
        print('==========================================================================')

        # Generate the response using the Gemini API
        response = client.models.generate_content(
            model=llm_name,
            contents=prompt,
            config=types.GenerateContentConfig(
                system_instruction=system_prompt,
            ),
        )

        print(f"Response: {response.text}")
        print('')
        print('')
    except ClientError as e:
        print(f"Got the error: {e}.")
        print('Maybe API is busy. Will try in a second...')
        time.sleep(3)
        prompt = get_prompt_from_question(user_input, db, num_neighbors_per_query)
        response = client.models.generate_content(
            model=llm_name,
            contents=prompt,
            config=types.GenerateContentConfig(
                system_instruction=system_prompt,
            ),
        )
    return response.text


if __name__ == "__main__":
    llm_name = 'gemini-2.0-flash-001'
    emb_model = 'models/text-embedding-004'
    articles_md_root = './assets/oura_articles'
    file2url_path = './assets/data/links_paths.csv'
    db_root = os.path.join(os.getcwd(), 'assets', f'databases-{emb_model.split("/")[-1]}')  # ./assets/databases-<emb_model_name>/
    turns_to_keep = 5
    num_neighbors_per_query = 5
    system_prompt = """
    You are an AI assistant specializing in providing support for the Oura mobile application, assisting users with their inquiries based solely on the provided context.

    ## Rules:
    - **Exclusive Reliance on Provided Context**: Answer questions using only the supplied context. Do not incorporate external knowledge.
    - **Handling Insufficient Context**:
    - If the context lacks sufficient information, respond with: *"I cannot answer based on the provided information."*
    - If a user query contains ambiguous references (e.g., "it", "this") and the context does not clarify them, politely ask for clarification: *"Could you please specify what you mean by 'it'? 😊"*
    - **Citations**: Cite information using the 'Source' metadata provided with each chunk. Keep citations sparse—cite once per paragraph or at the end of the relevant section. Use hyper-links.
    - **Preference for Relevant Chunks**: Prioritize information from chunks with lower similarity scores, as they are more pertinent.

    ## Formatting Guidelines:
    - **Markdown Usage**: Format responses in Markdown for clarity and readability.
    - **Tone**: Maintain a friendly and engaging tone. 😊 A couple of well-placed emojis are encouraged!
    - **Image Inclusion**:
    - Use HTML for images: `<img src="..." alt="..." style="object-fit: contain; ..." />`
    - If the original `alt` text includes "icon", add `width: 50px; height: 50px;` to the `style` attribute, e.g. battery, share, adjustment, menu etc icons.

    ## Examples:

    **Example 1: Sufficient Context**

    *User Question*: "How can I change the units of measurement in the Oura app?"

    *Context Provided*:
    - Chunk 1: "# Oura App Languages
    The Oura App is currently available in:

    * Danish
    ...
    * Swedish
    The Oura App also supports both metric and imperial units of measurement, which can be adjusted through the app's ![Icon Bars Menu.png](https://support.ouraring.com/hc/article_attachments/28601966533139) menu > Settings > Units."

    *Response*:
    "You can adjust the units of measurement in the Oura app through the app's <img src="https://support.ouraring.com/hc/article_attachments/28601966533139" alt="Icon Bars Menu.png" style="object-fit: contain; width: 50px; height: 50px;"/> menu > **Settings** > **Units**.  Source: [Oura App Languages](https://support.ouraring.com/hc/en-us/articles/360058028053-Oura-App-Languages)"

    **Example 2: Ambiguous Reference with Insufficient Context**
    *User Question*: "Can you do X?"
    *Agent Response*: "Yes, you can."
    *User Follow-up*: "How to do it?"
    *Context Provided*: *(No relevant information about 'X')*

    *Response*:
    "Could you please specify what you mean by 'it' so I can assist you better? 😊"

    **Example 3: Insufficient Context without Ambiguity**
    *User Question*: "What is the Oura app's refund policy?"
    *Context Provided*: *(No information on refund policy)*

    *Response*:
    "I cannot answer based on the provided information."

    **Example 4: Image Inclusion**
    *User Question*: "How to do X?"
    *Context Provided*: "Oura App supports X, and you can do it by following these steps:
    ...
    ![hw_reset_remastered.gif](https://support.ouraring.com/hc/article_attachments/34549633600147)
    ...
    ![ring battery level icon](https://support.ouraring.com/hc/article_attachments/28720126068115)
    ...
    [![app_ux_today_tab.png](https://support.ouraring.com/hc/article_attachments/36252969067283)](/hc/article_attachments/36252969067283)
    ..."

    *Response*:
    "To do X, follow these steps:
    ...
    <img src="https://support.ouraring.com/hc/article_attachments/34549633600147" alt="hw_reset_remastered.gif" style="object-fit: contain;"/>
    ...
    <img src="https://support.ouraring.com/hc/article_attachments/28720126068115" alt="ring battery level icon" style="object-fit: contain; width: 50px; height: 50px;"/>
    ...
    <img src="https://support.ouraring.com/hc/article_attachments/36252969067283" alt="app_ux_today_tab.png" style="object-fit: contain;"/>
    ..."
    (only an icon is resized)

    ## Final Reminders:
    - Base responses strictly on the retrieved context.
    - Avoid fabricating information.
    - Be friendly and engaging.
    - Cite sparsely.
    - Use html for images with `object-fit: contain;` style, and resize icons to `50px` width and height.
    - When in doubt, seek clarification or acknowledge the lack of information.
    """

    # Initialize the Gemini client
    client = genai.Client(api_key=os.environ['GEMINI_KEY'])

    # Initialize Chroma database: create or load the database
    db = create_or_get_chroma_db(
        gemini_client=client,
        emb_model=emb_model,
        articles_md_root=articles_md_root,
        file2url_path=file2url_path,
        db_root=db_root,
    )

    chatbot_response_partial = partial(
        chatbot_response,
        db=db,
        llm_name=llm_name,
        system_prompt=system_prompt,
        turns_to_keep=turns_to_keep,
        num_neighbors_per_query=num_neighbors_per_query,
    )

    # Create the Gradio interface
    with gr.Blocks() as demo:
        chatbot = gr.ChatInterface(
            title='My Precious: Your Inner Circle of Insight',
            fn=chatbot_response_partial,
        )

    # Launch the Gradio app
    demo.launch()