File size: 12,526 Bytes
6e8eb41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import os
import tempfile
import pandas as pd
import warnings
import torch
import numpy as np
from transformers import Trainer, TrainingArguments, set_seed
from tsfm_public import TimeSeriesPreprocessor
from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction
from tsfm_public.toolkit.get_model import get_model
from tsfm_public.toolkit.dataset import ForecastDFDataset
# Constants
SEED = 42
TTM_MODEL_PATH = "iaravagni/ttm-finetuned-model"
CONTEXT_LENGTH = 52 # 4.33 hrs
PREDICTION_LENGTH = 6 # 30 mins
OUT_DIR = "ttm_finetuned_models/"
def setup_environment():
"""
Set up the environment for model training and evaluation.
Creates necessary directories and sets random seed for reproducibility.
"""
set_seed(SEED)
os.makedirs(OUT_DIR, exist_ok=True)
os.makedirs(os.path.join(OUT_DIR, 'results'), exist_ok=True)
def load_dataset(file_path):
"""
Load the dataset from the specified file path.
Args:
file_path (str): Path to the dataset CSV file
Returns:
pd.DataFrame: The loaded dataset
"""
return pd.read_csv(file_path)
def prepare_data(data, timestamp_column):
"""
Prepare the dataset by converting timestamp column to datetime format.
Args:
data (pd.DataFrame): The dataset
timestamp_column (str): Name of the timestamp column
Returns:
pd.DataFrame: The processed dataset
"""
data[timestamp_column] = pd.to_datetime(data[timestamp_column])
return data
def get_column_specs():
"""
Define and return column specifications for the dataset.
Returns:
dict: Column specifications including timestamp, ID, target, and control columns
"""
timestamp_column = "Timestamp"
id_columns = ["patient_id"]
target_columns = ["Glucose"]
control_columns = ["Accelerometer", "Calories", "Carbs", "Sugar", "Gender", "HbA1c", "Age"]
return {
"timestamp_column": timestamp_column,
"id_columns": id_columns,
"target_columns": target_columns,
"control_columns": control_columns,
}
def create_test_only_dataset(ts_preprocessor, test_dataset, train_dataset=None, stride=1, enable_padding=True, **dataset_kwargs):
"""
Creates a preprocessed pytorch dataset for testing only.
Args:
ts_preprocessor: TimeSeriesPreprocessor instance
test_dataset: Pandas dataframe for testing
train_dataset: Optional pandas dataframe for training the scaler
stride: Stride used for creating the dataset
enable_padding: If True, datasets are created with padding
dataset_kwargs: Additional keyword arguments to pass to ForecastDFDataset
Returns:
ForecastDFDataset for testing
"""
# Standardize the test dataframe
test_data = ts_preprocessor._standardize_dataframe(test_dataset)
# Train the preprocessor on the training data if provided, otherwise use test data
if train_dataset is not None:
train_data = ts_preprocessor._standardize_dataframe(train_dataset)
ts_preprocessor.train(train_data)
else:
ts_preprocessor.train(test_data)
# Preprocess the test data
test_data_prep = test_data.copy() # Skip preprocessing to avoid scaling errors
# Specify columns
column_specifiers = {
"id_columns": ts_preprocessor.id_columns,
"timestamp_column": ts_preprocessor.timestamp_column,
"target_columns": ts_preprocessor.target_columns,
"observable_columns": ts_preprocessor.observable_columns,
"control_columns": ts_preprocessor.control_columns,
"conditional_columns": ts_preprocessor.conditional_columns,
"categorical_columns": ts_preprocessor.categorical_columns,
"static_categorical_columns": ts_preprocessor.static_categorical_columns,
}
params = column_specifiers
params["context_length"] = ts_preprocessor.context_length
params["prediction_length"] = ts_preprocessor.prediction_length
params["stride"] = stride
params["enable_padding"] = enable_padding
# Add frequency token - this is critical for TinyTimeMixer
params["frequency_token"] = ts_preprocessor.get_frequency_token(ts_preprocessor.freq)
# Update with any additional kwargs
params.update(**dataset_kwargs)
# Create the ForecastDFDataset
test_dataset = ForecastDFDataset(test_data_prep, **params)
if len(test_dataset) == 0:
raise RuntimeError("The generated test dataset is of zero length.")
return test_dataset
def zeroshot_eval(train_df, test_df, batch_size, context_length=CONTEXT_LENGTH, forecast_length=PREDICTION_LENGTH, model_path=TTM_MODEL_PATH):
"""
Performs zero-shot evaluation of time series forecasting on test data.
Args:
train_df: Training dataframe
test_df: Testing dataframe
batch_size: Batch size for evaluation
context_length: Number of time steps to use as context
forecast_length: Number of time steps to predict
Returns:
dict: Dictionary containing predictions dataframe and metrics
"""
column_specifiers = get_column_specs()
# Create preprocessor with scaling disabled
tsp = TimeSeriesPreprocessor(
timestamp_column=column_specifiers["timestamp_column"],
id_columns=column_specifiers["id_columns"],
target_columns=column_specifiers["target_columns"],
control_columns=column_specifiers["control_columns"],
context_length=context_length,
prediction_length=forecast_length,
scaling=False,
encode_categorical=False,
force_return="zeropad",
)
# Load model
zeroshot_model = get_model(
model_path,
context_length=context_length,
prediction_length=forecast_length,
freq_prefix_tuning=False,
freq=None,
prefer_l1_loss=False,
prefer_longer_context=True,
)
# Create test dataset
dset_test = create_test_only_dataset(ts_preprocessor=tsp, test_dataset=test_df, train_dataset=train_df)
# Setup trainer
temp_dir = tempfile.mkdtemp()
zeroshot_trainer = Trainer(
model=zeroshot_model,
args=TrainingArguments(
output_dir=temp_dir,
per_device_eval_batch_size=batch_size,
seed=SEED,
report_to="none",
),
)
# Get predictions
predictions_dict = zeroshot_trainer.predict(dset_test)
# Process predictions
processed_predictions = process_predictions(predictions_dict, tsp, column_specifiers["target_columns"])
# Get evaluation metrics
metrics = zeroshot_trainer.evaluate(dset_test)
return {
"predictions_df": processed_predictions,
"metrics": metrics
}
def process_predictions(predictions_dict, tsp, target_columns):
"""
Process the predictions from the Trainer into a usable DataFrame.
Args:
predictions_dict: Predictions from the Trainer
tsp: TimeSeriesPreprocessor instance
target_columns: List of target column names
Returns:
pd.DataFrame: DataFrame containing processed predictions
"""
# Extract predictions
if hasattr(predictions_dict, 'predictions'):
raw_predictions = predictions_dict.predictions
else:
raw_predictions = predictions_dict.get('predictions', predictions_dict)
# Handle tuple predictions (mean and uncertainty)
if isinstance(raw_predictions, tuple):
predictions = raw_predictions[0]
else:
predictions = raw_predictions
# Get shape information
n_samples, n_timesteps, n_features = predictions.shape
# Create DataFrame for processed predictions
processed_df = pd.DataFrame()
# Extract predictions for each target and timestep
for i, col in enumerate(target_columns):
if i < n_features:
for t in range(n_timesteps):
processed_df[f"{col}_step_{t+1}"] = predictions[:, t, i]
return processed_df
def simple_diagonal_averaging(predictions_df, test_data, context_length, step_columns):
"""
Improved approach to diagonally averaging predictions by patient.
Properly handles the last rows of predictions to ensure all available
predicted values are used.
Args:
predictions_df (pd.DataFrame): DataFrame with step-wise predictions
test_data (pd.DataFrame): Original test data with patient IDs
context_length (int): Number of context steps used in the model
step_columns (list): List of step column names
Returns:
pd.DataFrame: DataFrame with averaged predictions
"""
# Create a new dataframe for the final results
final_df = test_data.copy()
# Initialize prediction column with zeros/NaN
final_df['averaged_prediction'] = 0
# Process each patient separately
for patient_id in test_data['patient_id'].unique():
# Get indices for this patient
patient_mask = final_df['patient_id'] == patient_id
patient_indices = final_df[patient_mask].index
# Skip the first context_length rows for this patient
start_idx = min(context_length, len(patient_indices))
# For each row after the context window
for i in range(start_idx, len(patient_indices)):
row_idx = patient_indices[i]
pred_row_idx = i - context_length
# Skip if the prediction row index is negative
if pred_row_idx < 0:
continue
# Get the corresponding prediction row
if pred_row_idx < len(predictions_df):
# Average the predictions for all steps
avg_prediction = predictions_df.iloc[pred_row_idx][step_columns].mean()
final_df.loc[row_idx, 'averaged_prediction'] = avg_prediction
else:
# Handle the case where we've run out of prediction rows
# Calculate how many steps beyond the last prediction row we are
excess_steps = pred_row_idx - len(predictions_df) + 1
# Make sure we don't go beyond the available steps
if excess_steps < len(step_columns):
# Use the last row of predictions but only the appropriate steps
relevant_steps = step_columns[excess_steps:]
if relevant_steps:
avg_prediction = predictions_df.iloc[-1][relevant_steps].mean()
final_df.loc[row_idx, 'averaged_prediction'] = avg_prediction
return final_df
def main():
"""
Main function to execute the time series forecasting workflow.
"""
# Setup
# setup_environment()
# Get dataset path
script_dir = os.path.dirname(os.path.abspath(__file__))
test_file = os.path.join(script_dir, '..', 'data', 'processed', 'test_dataset.csv')
train_file = os.path.join(script_dir, '..', 'data', 'processed', 'train_dataset.csv')
# Load and prepare data
test_data = load_dataset(test_file)
train_data = load_dataset(train_file)
column_specs = get_column_specs()
test_data = prepare_data(test_data, column_specs["timestamp_column"])
train_data = prepare_data(train_data, column_specs["timestamp_column"])
# Run zero-shot evaluation
results = zeroshot_eval(
train_df=train_data,
test_df=test_data,
batch_size=8,
context_length=CONTEXT_LENGTH,
forecast_length=PREDICTION_LENGTH
)
# Get all step columns
step_columns = [col for col in results["predictions_df"].columns if col.startswith("Glucose_step_")]
# Apply simple diagonal averaging by patient
final_results = simple_diagonal_averaging(
results["predictions_df"],
test_data,
CONTEXT_LENGTH,
step_columns
)
# Save raw predictions to CSV
raw_predictions_path = os.path.join(script_dir, '..', 'data', 'outputs', 'dl_predictions_raw.csv')
results["predictions_df"].to_csv(raw_predictions_path, index=False)
# Save final results to CSV
final_results_path = os.path.join(script_dir, '..', 'data', 'outputs', 'dl_predictions.csv')
final_results.to_csv(final_results_path, index=False)
return
if __name__ == "__main__":
main() |