Spaces:
Paused
Paused
File size: 10,236 Bytes
c05d727 55c29e2 c05d727 bb0cd33 0a6ffff c05d727 bb0cd33 55c29e2 0a6ffff bb0cd33 55c29e2 c05d727 970733c 35cc57d c05d727 bb0cd33 35cc57d bb0cd33 35cc57d c05d727 bb0cd33 c05d727 bb0cd33 c05d727 bb0cd33 c05d727 bb0cd33 c05d727 4b5873a bb0cd33 4b5873a bb0cd33 c05d727 bb0cd33 c05d727 bb0cd33 c05d727 4b5873a bb0cd33 4b5873a bb0cd33 4b5873a bb0cd33 55c29e2 bb0cd33 55c29e2 bb0cd33 55c29e2 bb0cd33 55c29e2 bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 0a6ffff bb0cd33 c05d727 bb0cd33 c05d727 bb0cd33 c05d727 bb0cd33 c05d727 bb0cd33 c05d727 55c29e2 bb0cd33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
import cv2
import requests
import os
import random
from ultralytics import YOLO
import numpy as np
from collections import defaultdict
import sqlite3
import time
# Import the supervision library
import supervision as sv
# --- Initialize SQLite DB for logging ---
conn = sqlite3.connect("detection_log.db", check_same_thread=False)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS detections (
timestamp REAL,
frame_number INTEGER,
bin_name TEXT,
class_name TEXT,
count INTEGER
)
''')
conn.commit()
# --- File Downloading ---
# File URLs for sample images and video
file_urls = [
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/mix2.jpg?download=true',
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/mix11.jpg?download=true',
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/sample_waste.mp4?download=true',
]
def download_file(url, save_name):
"""Downloads a file from a URL, overwriting if it exists."""
print(f"Downloading from: {url}")
try:
response = requests.get(url, stream=True)
response.raise_for_status() # Check for HTTP errors
with open(save_name, 'wb') as file:
for chunk in response.iter_content(1024):
file.write(chunk)
print(f"Downloaded and overwrote: {save_name}")
except requests.exceptions.RequestException as e:
print(f"Error downloading {url}: {e}")
# Download sample images and video for the examples
for i, url in enumerate(file_urls):
if 'mp4' in url:
download_file(url, "video.mp4")
else:
download_file(url, f"image_{i}.jpg")
# --- Model and Class Configuration ---
# Load your custom YOLO model
# IMPORTANT: Replace 'best.pt' with the path to your model trained on the 12 classes.
model = YOLO('best.pt')
# Get class names and generate colors dynamically from the loaded model
# This is the best practice as it ensures names and colors match the model's output.
class_names = model.model.names
class_colors = {
name: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
for name in class_names.values()
}
# Define paths for Gradio examples
image_example_paths = [['image_0.jpg'], ['image_1.jpg']]
video_example_path = [['video.mp4']]
# --- Image Processing Function ---
def show_preds_image(image_path):
"""Processes a single image and overlays YOLO predictions."""
image = cv2.imread(image_path)
outputs = model.predict(source=image_path, verbose=False)
results = outputs[0].cpu().numpy()
# Convert to supervision Detections object for easier handling
detections = sv.Detections.from_ultralytics(outputs[0])
# Annotate the image with bounding boxes and labels
for i, (box, conf, cls) in enumerate(zip(detections.xyxy, detections.confidence, detections.class_id)):
x1, y1, x2, y2 = map(int, box)
class_name = class_names[cls]
color = class_colors[class_name]
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), color=color, thickness=2, lineType=cv2.LINE_AA)
# Create and display label
label = f"{class_name}: {conf:.2f}"
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2, cv2.LINE_AA)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# --- Video Processing Function (with Supervision) ---
def process_video_with_two_side_bins(video_path):
generator = sv.get_video_frames_generator(video_path)
try:
first_frame = next(generator)
except StopIteration:
blank_frame = np.zeros((480, 640, 3), dtype=np.uint8)
yield cv2.cvtColor(blank_frame, cv2.COLOR_BGR2RGB)
return
frame_height, frame_width, _ = first_frame.shape
bins = [
{
"name": "Recycle Bin",
"coords": (
int(frame_width * 0.05),
int(frame_height * 0.5),
int(frame_width * 0.25),
int(frame_height * 0.95),
),
"color": (200, 16, 46), # Blue-ish
},
{
"name": "Trash Bin",
"coords": (
int(frame_width * 0.75),
int(frame_height * 0.5),
int(frame_width * 0.95),
int(frame_height * 0.95),
),
"color": (50, 50, 50), # Red-ish
},
]
box_annotator = sv.BoxAnnotator(thickness=2)
label_annotator = sv.LabelAnnotator(
text_scale=1.2,
text_thickness=3,
text_position=sv.Position.TOP_LEFT,
)
tracker = sv.ByteTrack()
items_in_bins = {bin_["name"]: set() for bin_ in bins}
class_counts_per_bin = {bin_["name"]: defaultdict(int) for bin_ in bins}
frame_number = 0
BATCH_SIZE = 10
LOGGED_OBJECT_TTL_SECONDS = 300 # 5 minutes
insert_buffer = []
logged_objects = {}
for frame in generator:
frame_number += 1
current_time = time.time()
# Prune old logged objects every BATCH_SIZE frames
if frame_number % BATCH_SIZE == 0:
keys_to_remove = [key for key, ts in logged_objects.items()
if current_time - ts > LOGGED_OBJECT_TTL_SECONDS]
for key in keys_to_remove:
del logged_objects[key]
results = model(frame, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
tracked_detections = tracker.update_with_detections(detections)
annotated_frame = frame.copy()
# Draw bins and labels
for bin_ in bins:
x1, y1, x2, y2 = bin_["coords"]
color = bin_["color"]
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color=color, thickness=3)
cv2.putText(
annotated_frame,
bin_["name"],
(x1 + 5, y1 - 15),
cv2.FONT_HERSHEY_SIMPLEX,
1.5,
color,
3,
cv2.LINE_AA,
)
if tracked_detections.tracker_id is None:
yield cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
continue
# Clear counts for this frame
for bin_name in class_counts_per_bin:
class_counts_per_bin[bin_name].clear()
for box, track_id, class_id in zip(
tracked_detections.xyxy,
tracked_detections.tracker_id,
tracked_detections.class_id,
):
x1, y1, x2, y2 = map(int, box)
cx = (x1 + x2) // 2
cy = (y1 + y2) // 2
class_name = class_names[class_id]
for bin_ in bins:
bx1, by1, bx2, by2 = bin_["coords"]
bin_name = bin_["name"]
if (bx1 <= cx <= bx2) and (by1 <= cy <= by2):
key = (track_id, bin_name, class_name)
if track_id not in items_in_bins[bin_name]:
items_in_bins[bin_name].add(track_id)
class_counts_per_bin[bin_name][class_name] += 1
if key not in logged_objects:
timestamp = time.time()
insert_buffer.append((timestamp, frame_number, bin_name, class_name, 1))
logged_objects[key] = current_time
# Batch insert every BATCH_SIZE frames
if frame_number % BATCH_SIZE == 0 and insert_buffer:
cursor.executemany('''
INSERT INTO detections (timestamp, frame_number, bin_name, class_name, count)
VALUES (?, ?, ?, ?, ?)
''', insert_buffer)
conn.commit()
insert_buffer.clear()
labels = [
f"#{tid} {class_names[cid]}"
for cid, tid in zip(tracked_detections.class_id, tracked_detections.tracker_id)
]
annotated_frame = box_annotator.annotate(
scene=annotated_frame, detections=tracked_detections
)
annotated_frame = label_annotator.annotate(
scene=annotated_frame, detections=tracked_detections, labels=labels
)
# Display counts per bin
y_pos = 50
for bin_name, class_count_dict in class_counts_per_bin.items():
text = (
f"{bin_name}: "
+ ", ".join(f"{cls}={count}" for cls, count in class_count_dict.items())
)
cv2.putText(
annotated_frame,
text,
(30, y_pos),
cv2.FONT_HERSHEY_SIMPLEX,
1.1,
(255, 255, 255),
3,
cv2.LINE_AA,
)
y_pos += 40
yield cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
# Insert any remaining buffered data at end
if insert_buffer:
cursor.executemany('''
INSERT INTO detections (timestamp, frame_number, bin_name, class_name, count)
VALUES (?, ?, ?, ?, ?)
''', insert_buffer)
conn.commit()
insert_buffer.clear()
# --- Gradio Interface Setup ---
# Gradio Interface for Image Processing
interface_image = gr.Interface(
fn=show_preds_image,
inputs=gr.Image(type="filepath", label="Input Image"),
outputs=gr.Image(type="numpy", label="Output Image"),
title="Waste Detection (Image)",
description="Upload an image to see waste detection results.",
examples=image_example_paths,
cache_examples=False,
)
# Gradio Interface for Video Processing
interface_video = gr.Interface(
fn=process_video_with_two_side_bins,
inputs=gr.Video(label="Input Video"),
outputs=gr.Image(type="numpy", label="Output Video Stream"),
title="Waste Tracking and Counting (Video)",
description="Upload a video to see real-time object tracking and counting.",
examples=video_example_path,
cache_examples=False,
)
# Launch the Gradio App with separate tabs for each interface
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image Inference', 'Video Inference']
).queue().launch(debug=True) |