File size: 443 Bytes
70d956a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
# embedder.py
from sentence_transformers import SentenceTransformer
# multilingual-e5-large modelini yükle
model = SentenceTransformer("intfloat/multilingual-e5-large")
def get_embedding(text: str) -> list[float]:
try:
formatted = f"passage: {text.strip()}"
return model.encode(formatted, convert_to_numpy=True).tolist()
except Exception as e:
print(f"Embed hatası: {e}")
return None
|