Spaces:
Sleeping
Sleeping
File size: 1,667 Bytes
9079a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
import joblib
import numpy as np
from huggingface_hub import hf_hub_download
# Download models from Hugging Face Hub
svr_path = hf_hub_download(repo_id="iamomtiwari/Nutrition-regression-models", filename="svr_model.pkl")
lr_path = hf_hub_download(repo_id="iamomtiwari/Nutrition-regression-models", filename="linear_regression.pkl")
# Load models
svr_model = joblib.load(svr_path)
linear_reg = joblib.load(lr_path)
# Selected 10 important features
features = ['Caloric Value', 'Fat', 'Saturated Fats', 'Carbohydrates', 'Sugars',
'Protein', 'Cholesterol', 'Sodium', 'Calcium', 'Iron']
# Define prediction function
def predict(model_name, *inputs):
input_data = np.array([inputs]).reshape(1, -1)
if model_name == "SVR":
prediction = svr_model.predict(input_data)[0]
else:
prediction = linear_reg.predict(input_data)[0]
return round(prediction, 4)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Nutrition Density Prediction")
model_choice = gr.Radio(["SVR", "Linear Regression"], label="Select Model")
input_widgets = [gr.Slider(minimum=0, maximum=100, step=0.1, label=feature) for feature in features]
predict_button = gr.Button("Predict")
clear_button = gr.Button("Clear")
output_label = gr.Textbox(label="Prediction")
predict_button.click(predict, inputs=[model_choice] + input_widgets, outputs=output_label)
# Reset sliders to their default value (0) on "Clear"
def reset_sliders():
return [0] * len(features)
clear_button.click(reset_sliders, inputs=[], outputs=input_widgets)
# Run the app
demo.launch()
|