Spaces:
Sleeping
Sleeping
File size: 11,248 Bytes
d1c8f90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import stat
import gradio as gr
from llama_index.core.postprocessor import SimilarityPostprocessor
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.postprocessor import MetadataReplacementPostProcessor
from llama_index.core import StorageContext
import chromadb
from llama_index.vector_stores.chroma import ChromaVectorStore
import zipfile
import requests
import torch
from llama_index.core import Settings
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
import sys
import logging
import os
enable_rerank = True
# sentence_window,naive,recursive_retrieval
retrieval_strategy = "sentence_window"
base_embedding_source = "hf" # local,openai,hf
# intfloat/multilingual-e5-small local:BAAI/bge-small-en-v1.5 text-embedding-3-small nvidia/NV-Embed-v2 Alibaba-NLP/gte-large-en-v1.5
base_embedding_model = "Alibaba-NLP/gte-large-en-v1.5"
# meta-llama/Llama-3.1-8B meta-llama/Llama-3.2-3B-Instruct meta-llama/Llama-2-7b-chat-hf google/gemma-2-9b CohereForAI/c4ai-command-r-plus CohereForAI/aya-23-8B
base_llm_model = "mistralai/Mistral-7B-Instruct-v0.3"
# AdaptLLM/finance-chat
base_llm_source = "hf" # cohere,hf,anthropic
base_similarity_top_k = 20
# ChromaDB
env_extension = "_large" # _large _dev_window _large_window
db_collection = f"gte{env_extension}" # intfloat gte
read_db = True
active_chroma = True
root_path = "."
chroma_db_path = f"{root_path}/chroma_db" # ./chroma_db
# ./processed_files.json
processed_files_log = f"{root_path}/processed_files{env_extension}.json"
# check hyperparameter
if retrieval_strategy not in ["sentence_window", "naive"]: # recursive_retrieval
raise Exception(f"{retrieval_strategy} retrieval_strategy is not support")
os.environ["OPENAI_API_KEY"] = 'sk-xxxxxxxxxx'
hf_api_key = os.getenv("HF_API_KEY")
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
torch.cuda.empty_cache()
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
print(f"loading embedding ..{base_embedding_model}")
if base_embedding_source == 'hf':
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
Settings.embed_model = HuggingFaceEmbedding(
model_name=base_embedding_model, trust_remote_code=True) # ,
else:
raise Exception("embedding model is invalid")
# setup prompts - specific to StableLM
if base_llm_source == 'hf':
from llama_index.core import PromptTemplate
# This will wrap the default prompts that are internal to llama-index
# taken from https://huggingface.co/Writer/camel-5b-hf
query_wrapper_prompt = PromptTemplate(
"Below is an instruction that describes a task. "
"you need to make sure that user's question and retrived context mention the same stock symbol if not please give no answer to user"
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{query_str}\n\n### Response:"
)
if base_llm_source == 'hf':
llm = HuggingFaceLLM(
context_window=2048,
max_new_tokens=512, # 256
generate_kwargs={"temperature": 0.1, "do_sample": False}, # 0.25
query_wrapper_prompt=query_wrapper_prompt,
tokenizer_name=base_llm_model,
model_name=base_llm_model,
device_map="auto",
tokenizer_kwargs={"max_length": 2048},
# uncomment this if using CUDA to reduce memory usage
model_kwargs={"torch_dtype": torch.float16}
)
Settings.chunk_size = 512
Settings.llm = llm
"""#### Load documents, build the VectorStoreIndex"""
def download_and_extract_chroma_db(url, destination):
"""Download and extract ChromaDB from Hugging Face Datasets."""
# Create destination folder if it doesn't exist
if not os.path.exists(destination):
os.makedirs(destination)
else:
# If the folder exists, remove it to ensure a fresh extract
print("Destination folder exists. Removing it...")
for root, dirs, files in os.walk(destination, topdown=False):
for file in files:
os.remove(os.path.join(root, file))
for dir in dirs:
os.rmdir(os.path.join(root, dir))
print("Destination folder cleared.")
db_zip_path = os.path.join(destination, "chroma_db.zip")
if not os.path.exists(db_zip_path):
# Download the ChromaDB zip file
print("Downloading ChromaDB from Hugging Face Datasets...")
headers = {
"Authorization": f"Bearer {hf_api_key}"
}
response = requests.get(url, headers=headers, stream=True)
response.raise_for_status()
with open(db_zip_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print("Download completed.")
else:
print("Zip file already exists, skipping download.")
# Extract the zip file
print("Extracting ChromaDB...")
with zipfile.ZipFile(db_zip_path, 'r') as zip_ref:
zip_ref.extractall(destination)
print("Extraction completed. Zip file retained.")
# URL to your dataset hosted on Hugging Face
chroma_db_url = "https://huggingface.co/datasets/iamboolean/set50-db/resolve/main/chroma_db.zip"
# Local destination for the ChromaDB
chroma_db_path_extract = "./" # You can change this to your desired path
# Download and extract the ChromaDB
download_and_extract_chroma_db(chroma_db_url, chroma_db_path_extract)
# Define ChromaDB client (persistent mode)er
db = chromadb.PersistentClient(path=chroma_db_path)
print(f"db path:{chroma_db_path}")
chroma_collection = db.get_or_create_collection(db_collection)
print(f"db collection:{db_collection}")
# Set up ChromaVectorStore and embeddings
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
document_count = chroma_collection.count()
print(f"Total documents in the collection: {document_count}")
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
# embed_model=embed_model,
)
"""#### Query Index"""
rerank = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=10
)
node_postprocessors = []
# node_postprocessors.append(SimilarityPostprocessor(similarity_cutoff=0.6))
if retrieval_strategy == 'sentence_window':
node_postprocessors.append(
MetadataReplacementPostProcessor(target_metadata_key="window"))
if enable_rerank:
node_postprocessors.append(rerank)
query_engine = index.as_query_engine(
similarity_top_k=base_similarity_top_k,
# the target key defaults to `window` to match the node_parser's default
node_postprocessors=node_postprocessors,
)
def metadata_formatter(metadata):
company_symbol = metadata['file_name'].split(
'-')[0] # Split at '-' and take the first part
# Split at '-' and then '.' to extract the year
year = metadata['file_name'].split('-')[1].split('.')[0]
page_number = metadata['page_label']
return f"Company File: {metadata['file_name'].split('-')[0]}, Year: {metadata['file_name'].split('-')[1].split('.')[0]}, Page Number: {metadata['page_label']}"
def query_journal(question):
response = query_engine.query(question) # Query the index
matched_nodes = response.source_nodes # Extract matched nodes
# Prepare the matched nodes details
retrieved_context = "\n".join([
# f"Node ID: {node.node_id}\n"
# f"Matched Content: {node.node.text}\n"
# f"Metadata: {node.node.metadata if node.node.metadata else 'None'}"
f"Metadata: {metadata_formatter(node.node.metadata) if node.node.metadata else 'None'}"
for node in matched_nodes
])
generated_answer = str(response)
# Return both retrieved context and detailed matched nodes
return retrieved_context, generated_answer
# Define the Gradio interface
with gr.Blocks() as app:
# Title
gr.Markdown(
"""
<div style="text-align: center;">
<h1>SET50RAG: Retrieval-Augmented Generation for Thai Public Companies Question Answering</h1>
</div>
"""
)
# Description
gr.Markdown(
"""
The **SET50RAG** tool provides an interactive way to analyze and extract insights from **243 annual reports** of Thai public companies spanning **5 years**.
By leveraging advanced **Retrieval-Augmented Generation**, including **GTE-Large embedding models**, **Sentence Window with Reranking**, and powerful **Large Language Models (LLMs)** like **Mistral-7B**, the system efficiently retrieves and answers complex financial queries.
This scalable and cost-effective solution reduces reliance on parametric knowledge, ensuring contextually accurate and relevant responses.
"""
)
# How to Use Section
gr.Markdown(
"""
### How to Use
1. Type your question in the box or select an example question below.
2. Click **Submit** to retrieve the context and get an AI-generated answer.
3. Review the retrieved context and the generated answer to gain insights.
---
"""
)
# Example Questions Section
gr.Markdown(
"""
### Example Questions
- What is the revenue of PTTOR in 2022?
- what is effect of COVID-19 on BDMS show me in Timeline format from 2019 to 2023?
- How does CPALL plan for electric vehicles?
"""
)
# Interactive Section (RAG Box)
with gr.Row():
with gr.Column():
user_question = gr.Textbox(
label="Ask a Question",
placeholder="Type your question here, e.g., 'What is the revenue of PTTOR in 2022?'",
)
example_question_button = gr.Button("Use Example Question")
with gr.Column():
generated_answer = gr.Textbox(
label="Generated Answer",
placeholder="The AI-generated answer will appear here.",
interactive=False,
)
retrieved_context = gr.Textbox(
label="Retrieved Context",
placeholder="Relevant context will appear here.",
interactive=False,
)
# Button for user interaction
submit_button = gr.Button("Submit")
# Example question logic
def use_example_question():
return "What is the revenue of PTTOR in 2022?"
example_question_button.click(
use_example_question, inputs=[], outputs=[user_question]
)
# Interaction logic for submitting user queries
submit_button.click(
query_journal, inputs=[user_question], outputs=[
retrieved_context, generated_answer]
)
# Footer
gr.Markdown(
"""
---
### Limitations and Bias:
- Optimized for Thai financial reports from SET50 companies. Results may vary for other domains.
- Retrieval and accuracy depend on data quality and embedding models.
"""
)
# Launch the app
# app.launch()
app.launch(server_name="0.0.0.0") # , server_port=7860
|