File size: 4,615 Bytes
847d138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
"""LiLT For Deployment

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1ol6RWyff15SF6ZJPf47X5380hBTEDiUH
"""

# ## Installing the dependencies (might take some time)

# !pip install -q pytesseract
# !sudo apt install  -q tesseract-ocr
# !pip install  -q transformers
# !pip install  -q pytorch-lightning
# !pip install  -q einops
# !pip install  -q tqdm
# !pip install -q gradio
# !pip install -q Pillow==7.1.2
# !pip install -q wandb
# !pip install -q gdown
# !pip install -q torchmetrics

## Requirements.txt
import os
os.system('pip install pyyaml==5.1')
## install PyTesseract
os.system('pip install -q pytesseract')
os.environ["TOKENIZERS_PARALLELISM"] = "false"

import pandas as pd
import os
from PIL import Image
from transformers import RobertaTokenizer
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import pytorch_lightning as pl

from dataset import create_features
from modeling import LiLT
from utils import LiLTPL

import gdown
import gradio as gr

seed = 42

## One can change this configuration and try out new combination
config = {
  "hidden_dropout_prob": 0.1,
  "hidden_size_t": 768,
  "hidden_size" : 768,
  "hidden_size_l": 768 // 6,
  "intermediate_ff_size_factor": 4,
  "max_2d_position_embeddings": 1001,
  "max_seq_len_l": 512,
  "max_seq_len_t" : 512,
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  'dim_head' : 64,
  "shape_size": 96,
  "vocab_size": 50265,
  "eps": 1e-12,
  "fine_tune" : True
}

id2label = ['scientific_report',
 'resume',
 'memo',
 'file_folder',
 'specification',
 'news_article',
 'letter',
 'form',
 'budget',
 'handwritten',
 'email',
 'invoice',
 'presentation',
 'scientific_publication',
 'questionnaire',
 'advertisement']

## Defining tokenizer
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')

url = 'https://drive.google.com/uc?id=1eRV4fS_LFwI5MHqcRwLUNQZgewxI6Se_'
output = 'lilt_ckpt.ckpt'
gdown.download(url, output, quiet=False)

class RVLCDIPData(Dataset):
    
    def __init__(self, image_list, label_list, tokenizer, max_len = 512, size = 1000):
        
        self.image_list = image_list
        self.label_list = label_list
        self.tokenizer = tokenizer
        self.max_seq_length = max_len
        self.size = size
        
    def __len__(self):
        return len(self.image_list)
    
    def __getitem__(self, idx):
        img_path = self.image_list[idx]
        label = self.label_list[idx]
        
        boxes, words, normal_box = create_features(
                                img_path = img_path,
                                tokenizer = self.tokenizer,
                                max_seq_length = self.max_seq_length,
                                size = self.size,
                                use_ocr  = True,
                               )
        
        final_encoding = {'input_boxes': boxes, 'input_words': words}
        final_encoding['label'] = torch.as_tensor(label).long()
        
        return final_encoding

lilt = LiLTPL(config)
# path_to_weights = 'drive/MyDrive/docformer_rvl_checkpoint/docformer_v1.ckpt'
lilt.load_from_checkpoint('lilt_ckpt.ckpt')

## Taken from LayoutLMV2 space

image = gr.inputs.Image(type="pil")
label = gr.outputs.Label(num_top_classes=5)
examples = [['00093726.png'], ['00866042.png']]
title = "Interactive demo: LiLT for Image Classification"
description = "Demo for classifying document images with LiLT model. To use it, \
simply upload an image or use the example images below and click 'submit' to let the model predict the 5 most probable Document classes. \
Results will show up in a few seconds."

def classify_image(image):

  image.save('sample_img.png')
  boxes, words, normal_box = create_features(
                                img_path = 'sample_img.png',
                                tokenizer = tokenizer,
                                max_seq_length = 512,
                                size = 1000,
                                use_ocr  = True,
                               )

  final_encoding = {'input_boxes': boxes.unsqueeze(0), 'input_words': words.unsqueeze(0)}
  output = lilt.forward(final_encoding)
  output = output[0].softmax(axis = -1)
  
  final_pred = {}
  for i, score in enumerate(output):
      score = output[i]
      final_pred[id2label[i]] = score.detach().cpu().tolist()
      
  return final_pred

gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)