Spaces:
Runtime error
Runtime error
File size: 11,276 Bytes
15f37f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# -*- coding: utf-8 -*-
import os
import pickle
from functools import lru_cache
import pytesseract
import numpy as np
from PIL import Image
import torch
from torchvision.transforms import ToTensor
PAD_TOKEN_BOX = [0, 0, 0, 0]
GRID_SIZE = 1000
def normalize_box(box, width, height, size=1000):
"""
Takes a bounding box and normalizes it to a thousand pixels. If you notice it is
just like calculating percentage except takes 1000 instead of 100.
"""
return [
int(size * (box[0] / width)),
int(size * (box[1] / height)),
int(size * (box[2] / width)),
int(size * (box[3] / height)),
]
@lru_cache(maxsize=10)
def resize_align_bbox(bbox, orig_w, orig_h, target_w, target_h):
x_scale = target_w / orig_w
y_scale = target_h / orig_h
orig_left, orig_top, orig_right, orig_bottom = bbox
x = int(np.round(orig_left * x_scale))
y = int(np.round(orig_top * y_scale))
xmax = int(np.round(orig_right * x_scale))
ymax = int(np.round(orig_bottom * y_scale))
return [x, y, xmax, ymax]
def get_topleft_bottomright_coordinates(df_row):
left, top, width, height = df_row["left"], df_row["top"], df_row["width"], df_row["height"]
return [left, top, left + width, top + height]
def apply_ocr(image_fp):
"""
Returns words and its bounding boxes from an image
"""
image = Image.open(image_fp)
width, height = image.size
ocr_df = pytesseract.image_to_data(image, output_type="data.frame")
ocr_df = ocr_df.dropna().reset_index(drop=True)
float_cols = ocr_df.select_dtypes("float").columns
ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int)
ocr_df = ocr_df.replace(r"^\s*$", np.nan, regex=True)
ocr_df = ocr_df.dropna().reset_index(drop=True)
words = list(ocr_df.text.apply(lambda x: str(x).strip()))
actual_bboxes = ocr_df.apply(get_topleft_bottomright_coordinates, axis=1).values.tolist()
# add as extra columns
assert len(words) == len(actual_bboxes)
return {"words": words, "bbox": actual_bboxes}
def get_tokens_with_boxes(unnormalized_word_boxes, pad_token_box, word_ids,max_seq_len = 512):
# assert len(unnormalized_word_boxes) == len(word_ids), this should not be applied, since word_ids may have higher
# length and the bbox corresponding to them may not exist
unnormalized_token_boxes = []
for i, word_idx in enumerate(word_ids):
if word_idx is None:
break
unnormalized_token_boxes.append(unnormalized_word_boxes[word_idx])
# all remaining are padding tokens so why add them in a loop one by one
num_pad_tokens = len(word_ids) - i - 1
if num_pad_tokens > 0:
unnormalized_token_boxes.extend([pad_token_box] * num_pad_tokens)
if len(unnormalized_token_boxes)<max_seq_len:
unnormalized_token_boxes.extend([pad_token_box] * (max_seq_len-len(unnormalized_token_boxes)))
return unnormalized_token_boxes
def get_centroid(actual_bbox):
centroid = []
for i in actual_bbox:
width = i[2] - i[0]
height = i[3] - i[1]
centroid.append([i[0] + width / 2, i[1] + height / 2])
return centroid
def get_pad_token_id_start_index(words, encoding, tokenizer):
# assert len(words) < len(encoding["input_ids"]) This condition, was creating errors on some sample images
for idx in range(len(encoding["input_ids"])):
if encoding["input_ids"][idx] == tokenizer.pad_token_id:
break
return idx
def get_relative_distance(bboxes, centroids, pad_tokens_start_idx):
a_rel_x = []
a_rel_y = []
for i in range(0, len(bboxes)-1):
if i >= pad_tokens_start_idx:
a_rel_x.append([0] * 8)
a_rel_y.append([0] * 8)
continue
curr = bboxes[i]
next = bboxes[i+1]
a_rel_x.append(
[
curr[0], # top left x
curr[2], # bottom right x
curr[2] - curr[0], # width
next[0] - curr[0], # diff top left x
next[0] - curr[0], # diff bottom left x
next[2] - curr[2], # diff top right x
next[2] - curr[2], # diff bottom right x
centroids[i+1][0] - centroids[i][0],
]
)
a_rel_y.append(
[
curr[1], # top left y
curr[3], # bottom right y
curr[3] - curr[1], # height
next[1] - curr[1], # diff top left y
next[3] - curr[3], # diff bottom left y
next[1] - curr[1], # diff top right y
next[3] - curr[3], # diff bottom right y
centroids[i+1][1] - centroids[i][1],
]
)
# For the last word
a_rel_x.append([0]*8)
a_rel_y.append([0]*8)
return a_rel_x, a_rel_y
def apply_mask(inputs, tokenizer):
inputs = torch.as_tensor(inputs)
rand = torch.rand(inputs.shape)
# where the random array is less than 0.15, we set true
mask_arr = (rand < 0.15) * (inputs != tokenizer.cls_token_id) * (inputs != tokenizer.pad_token_id)
# create selection from mask_arr
selection = torch.flatten(mask_arr.nonzero()).tolist()
# apply selection pad_tokens_start_idx to inputs.input_ids, adding MASK tokens
inputs[selection] = 103
return inputs
def read_image_and_extract_text(image):
original_image = Image.open(image).convert("RGB")
return apply_ocr(image)
def create_features(
image,
tokenizer,
add_batch_dim=False,
target_size=(500,384), # This was the resolution used by the authors
max_seq_length=512,
path_to_save=None,
save_to_disk=False,
apply_mask_for_mlm=False,
extras_for_debugging=False,
use_ocr = False,
bounding_box = None,
words = None
):
# step 1: read original image and extract OCR entries
original_image = Image.open(image).convert("RGB")
if (use_ocr == False) and (bounding_box == None or words == None):
raise Exception('Please provide the bounding box and words or pass the argument "use_ocr" = True')
if use_ocr == True:
entries = apply_ocr(image)
bounding_box = entries["bbox"]
words = entries["words"]
CLS_TOKEN_BOX = [0, 0, *original_image.size] # Can be variable, but as per the paper, they have mentioned that it covers the whole image
# step 2: resize image
resized_image = original_image.resize(target_size)
# step 3: normalize image to a grid of 1000 x 1000 (to avoid the problem of differently sized images)
width, height = original_image.size
normalized_word_boxes = [
normalize_box(bbox, width, height, GRID_SIZE) for bbox in bounding_box
]
assert len(words) == len(normalized_word_boxes), "Length of words != Length of normalized words"
# step 4: tokenize words and get their bounding boxes (one word may split into multiple tokens)
encoding = tokenizer(words,
padding="max_length",
max_length=max_seq_length,
is_split_into_words=True,
truncation=True,
add_special_tokens=False)
unnormalized_token_boxes = get_tokens_with_boxes(bounding_box,
PAD_TOKEN_BOX,
encoding.word_ids())
# step 5: add special tokens and truncate seq. to maximum length
unnormalized_token_boxes = [CLS_TOKEN_BOX] + unnormalized_token_boxes[:-1]
# add CLS token manually to avoid autom. addition of SEP too (as in the paper)
encoding["input_ids"] = [tokenizer.cls_token_id] + encoding["input_ids"][:-1]
# step 6: Add bounding boxes to the encoding dict
encoding["unnormalized_token_boxes"] = unnormalized_token_boxes
# step 7: apply mask for the sake of pre-training
if apply_mask_for_mlm:
encoding["mlm_labels"] = encoding["input_ids"]
encoding["input_ids"] = apply_mask(encoding["input_ids"], tokenizer)
assert len(encoding["mlm_labels"]) == max_seq_length, "Length of mlm_labels != Length of max_seq_length"
assert len(encoding["input_ids"]) == max_seq_length, "Length of input_ids != Length of max_seq_length"
assert len(encoding["attention_mask"]) == max_seq_length, "Length of attention mask != Length of max_seq_length"
assert len(encoding["token_type_ids"]) == max_seq_length, "Length of token type ids != Length of max_seq_length"
# step 8: normalize the image
encoding["resized_scaled_img"] = ToTensor()(resized_image)
# step 9: apply mask for the sake of pre-training
if apply_mask_for_mlm:
encoding["mlm_labels"] = encoding["input_ids"]
encoding["input_ids"] = apply_mask(encoding["input_ids"], tokenizer)
# step 10: rescale and align the bounding boxes to match the resized image size (typically 224x224)
resized_and_aligned_bboxes = []
for bbox in unnormalized_token_boxes:
# performing the normalization of the bounding box
resized_and_aligned_bboxes.append(resize_align_bbox(tuple(bbox), *original_image.size, *target_size))
encoding["resized_and_aligned_bounding_boxes"] = resized_and_aligned_bboxes
# step 11: add the relative distances in the normalized grid
bboxes_centroids = get_centroid(resized_and_aligned_bboxes)
pad_token_start_index = get_pad_token_id_start_index(words, encoding, tokenizer)
a_rel_x, a_rel_y = get_relative_distance(resized_and_aligned_bboxes, bboxes_centroids, pad_token_start_index)
# step 12: convert all to tensors
for k, v in encoding.items():
encoding[k] = torch.as_tensor(encoding[k])
encoding.update({
"x_features": torch.as_tensor(a_rel_x, dtype=torch.int32),
"y_features": torch.as_tensor(a_rel_y, dtype=torch.int32),
})
# step 13: add tokens for debugging
if extras_for_debugging:
input_ids = encoding["mlm_labels"] if apply_mask_for_mlm else encoding["input_ids"]
encoding["tokens_without_padding"] = tokenizer.convert_ids_to_tokens(input_ids)
encoding["words"] = words
# step 14: add extra dim for batch
if add_batch_dim:
encoding["x_features"].unsqueeze_(0)
encoding["y_features"].unsqueeze_(0)
encoding["input_ids"].unsqueeze_(0)
encoding["resized_scaled_img"].unsqueeze_(0)
# step 15: save to disk
if save_to_disk:
os.makedirs(path_to_save, exist_ok=True)
image_name = os.path.basename(image)
with open(f"{path_to_save}{image_name}.pickle", "wb") as f:
pickle.dump(encoding, f)
# step 16: keys to keep, resized_and_aligned_bounding_boxes have been added for the purpose to test if the bounding boxes are drawn correctly or not, it maybe removed
keys = ['resized_scaled_img', 'x_features','y_features','input_ids','resized_and_aligned_bounding_boxes']
if apply_mask_for_mlm:
keys.append('mlm_labels')
final_encoding = {k:encoding[k] for k in keys}
del encoding
return final_encoding
|