Spaces:
Runtime error
Runtime error
File size: 4,476 Bytes
342ae6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
# -*- coding: utf-8 -*-
"""Gradio with DocFormer
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1_XBurG-8jYF4eJJK5VoCJ2Y1v6RV9iAW
"""
## Requirements.txt
import os
os.system('pip install pyyaml==5.1')
## install PyTesseract
os.system('pip install -q pytesseract')
## Importing the functions from the DocFormer Repo
from dataset import create_features
from modeling import DocFormerEncoder,ResNetFeatureExtractor,DocFormerEmbeddings,LanguageFeatureExtractor
from transformers import BertTokenizerFast
from utils import DocFormer
## Hyperparameters
import torch
seed = 42
target_size = (500, 384)
max_len = 128
## Setting some hyperparameters
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = {
"coordinate_size": 96, ## (768/8), 8 for each of the 8 coordinates of x, y
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"image_feature_pool_shape": [7, 7, 256],
"intermediate_ff_size_factor": 4,
"max_2d_position_embeddings": 1024,
"max_position_embeddings": 128,
"max_relative_positions": 8,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"shape_size": 96,
"vocab_size": 30522,
"layer_norm_eps": 1e-12,
}
## Defining the tokenizer
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
docformer = DocFormer(config)
# path_to_weights = 'drive/MyDrive/docformer_rvl_checkpoint/docformer_v1.ckpt'
url = 'https://www.kaggleusercontent.com/kf/97691030/eyJhbGciOiJkaXIiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0..64MVC5RwlflRqMaApK2jLw.rDiswzBHQcP_1_7vsHlJgSGKLdOqVB-d4hcGP6kQs5vEAdBmOzXL6XY9MleO3A4Sk0D5RB9QGeOyp7MuBZoHJbZ0gOVz6iRsats32fz2OU1yqQt22HIigL2mD_7mrTMn5IkP7KwsxtMMEuaOPEzFh1z8JQ9eE_NFBxIkOFF_Bp62a7agvDPL3HxzmxFQ7pwrYv9ZjYNfbDeeBuHu5J_MT_wHE5hOT1FENIMhebg3Q9l7eegUZD3eCMV4QoI_HsU6NZjyZOQcpVFmU6exYz8hGnFUa_V03870N6VnTkox78td0OXH29o3bYGSWneuCc86qSHKj5I1m8KbmCenPT6zU6IQINXp8BGLVlLOHdwVAPapR4X4CqSiK3Wgt5JINfpfVjQYWo2gDkAwJI026-fdLAfJQUI6mYGd-ERpyL5ZIbdkpesTslstOtlzoNT9gp_USW6aINxO8DranfK3-PiMZ_X1zHsK1vscRpO9gohNhuOg362ijjl3FQrw48-YbYfykQFfVwQpnhYQ9Q6d5gNANfJMrzH92DlpQFBaPOLcze1BAVdM4zmVGdt8Jo-Knk1JADpNizHWmF19eDxudQO_ZCxvXWpc8v3LOh-HpA2mBB0HI1DZ4cqcMETtOwas5wzHrLqDLRJpso6BKOgz78kIZJDdj6rr7yY4QVWpVOOdNZ8.VZzPPNhnz_MUdNnc5DaZOw/models/epoch=0-step=753.ckpt'
docformer.load_from_checkpoint(url)
id2label = ['scientific_report',
'resume',
'memo',
'file_folder',
'specification',
'news_article',
'letter',
'form',
'budget',
'handwritten',
'email',
'invoice',
'presentation',
'scientific_publication',
'questionnaire',
'advertisement']
import gradio as gr
## Taken from LayoutLMV2 space
image = gr.inputs.Image(type="pil")
label = gr.outputs.Label(num_top_classes=5)
examples = [['00093726.png'], ['00866042.png']]
title = "Interactive demo: DocFormer for Image Classification"
description = "Demo for classifying document images with DocFormer model. To use it, \
simply upload an image or use the example images below and click 'submit' to let the model predict the 5 most probable Document classes. \
Results will show up in a few seconds."
def classify_image(image):
image.save('sample_img.png')
final_encoding = create_features(
'./sample_img.png',
tokenizer,
add_batch_dim=True,
target_size=target_size,
max_seq_length=max_len,
path_to_save=None,
save_to_disk=False,
apply_mask_for_mlm=False,
extras_for_debugging=False,
use_ocr = True
)
keys_to_reshape = ['x_features', 'y_features', 'resized_and_aligned_bounding_boxes']
for key in keys_to_reshape:
final_encoding[key] = final_encoding[key][:, :max_len]
from torchvision import transforms
# ## Normalization to these mean and std (I have seen some tutorials used this, and also in image reconstruction, so used it)
transform = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
final_encoding['resized_scaled_img'] = transform(final_encoding['resized_scaled_img'])
output = docformer.forward(final_encoding)
output = output[0].softmax(axis = -1)
final_pred = {}
for i, score in enumerate(output):
score = output[i]
final_pred[id2label[i]] = score.detach().cpu().tolist()
return final_pred
gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|