Spaces:
Sleeping
Sleeping
File size: 11,975 Bytes
79df973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
// Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, check out LICENSE.md
//
// The ray marching algorithm used in this file is a variety of modified
// Bresenham method:
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.3443&rep=rep1&type=pdf
// Search for "voxel traversal algorithm" for related information
#include <torch/types.h>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <curand.h>
#include <curand_kernel.h>
#include <time.h>
//#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <vector>
#include "voxlib_common.h"
struct RVIP_Params {
int voxel_dims[3];
int voxel_strides[3];
int max_samples;
int img_dims[2];
// Camera parameters
float cam_ori[3];
float cam_fwd[3];
float cam_side[3];
float cam_up[3];
float cam_c[2];
float cam_f;
// unsigned long seed;
};
/*
out_voxel_id: torch CUDA int32 [ img_dims[0], img_dims[1], max_samples,
1] out_depth: torch CUDA float [2, img_dims[0], img_dims[1], max_samples,
1] out_raydirs: torch CUDA float [ img_dims[0], img_dims[1], 1,
3] Image coordinates refer to the center of the pixel [0, 0, 0] at voxel
coordinate is at the corner of the corner block (instead of at the center)
*/
template <int TILE_DIM>
static __global__ void ray_voxel_intersection_perspective_kernel(
int32_t *__restrict__ out_voxel_id, float *__restrict__ out_depth,
float *__restrict__ out_raydirs, const int32_t *__restrict__ in_voxel,
const RVIP_Params p) {
int img_coords[2];
img_coords[1] = blockIdx.x * TILE_DIM + threadIdx.x;
img_coords[0] = blockIdx.y * TILE_DIM + threadIdx.y;
if (img_coords[0] >= p.img_dims[0] || img_coords[1] >= p.img_dims[1]) {
return;
}
int pix_index = img_coords[0] * p.img_dims[1] + img_coords[1];
// Calculate ray origin and direction
float rayori[3], raydir[3];
rayori[0] = p.cam_ori[0];
rayori[1] = p.cam_ori[1];
rayori[2] = p.cam_ori[2];
// Camera intrinsics
float ndc_imcoords[2];
ndc_imcoords[0] = p.cam_c[0] - (float)img_coords[0]; // Flip height
ndc_imcoords[1] = (float)img_coords[1] - p.cam_c[1];
raydir[0] = p.cam_up[0] * ndc_imcoords[0] + p.cam_side[0] * ndc_imcoords[1] +
p.cam_fwd[0] * p.cam_f;
raydir[1] = p.cam_up[1] * ndc_imcoords[0] + p.cam_side[1] * ndc_imcoords[1] +
p.cam_fwd[1] * p.cam_f;
raydir[2] = p.cam_up[2] * ndc_imcoords[0] + p.cam_side[2] * ndc_imcoords[1] +
p.cam_fwd[2] * p.cam_f;
normalize<float, 3>(raydir);
// Save out_raydirs
out_raydirs[pix_index * 3] = raydir[0];
out_raydirs[pix_index * 3 + 1] = raydir[1];
out_raydirs[pix_index * 3 + 2] = raydir[2];
float axis_t[3];
int axis_int[3];
// int axis_intbound[3];
// Current voxel
axis_int[0] = floorf(rayori[0]);
axis_int[1] = floorf(rayori[1]);
axis_int[2] = floorf(rayori[2]);
#pragma unroll
for (int i = 0; i < 3; i++) {
if (raydir[i] > 0) {
// Initial t value
// Handle boundary case where rayori[i] is a whole number. Always round Up
// for the next block
// axis_t[i] = (ceilf(nextafterf(rayori[i], HUGE_VALF)) - rayori[i]) /
// raydir[i];
axis_t[i] = ((float)(axis_int[i] + 1) - rayori[i]) / raydir[i];
} else if (raydir[i] < 0) {
axis_t[i] = ((float)axis_int[i] - rayori[i]) / raydir[i];
} else {
axis_t[i] = HUGE_VALF;
}
}
// Fused raymarching and sampling
bool quit = false;
for (int cur_plane = 0; cur_plane < p.max_samples;
cur_plane++) { // Last cycle is for calculating p2
float t = nanf("0");
float t2 = nanf("0");
int32_t blk_id = 0;
// Find the next intersection
while (!quit) {
// Find the next smallest t
float tnow;
/*
#pragma unroll
for (int i=0; i<3; i++) {
if (axis_t[i] <= axis_t[(i+1)%3] && axis_t[i] <= axis_t[(i+2)%3]) {
// Update current t
tnow = axis_t[i];
// Update t candidates
if (raydir[i] > 0) {
axis_int[i] += 1;
if (axis_int[i] >= p.voxel_dims[i]) {
quit = true;
}
axis_t[i] = ((float)(axis_int[i]+1) - rayori[i]) / raydir[i];
} else {
axis_int[i] -= 1;
if (axis_int[i] < 0) {
quit = true;
}
axis_t[i] = ((float)axis_int[i] - rayori[i]) / raydir[i];
}
break; // Avoid advancing multiple steps as axis_t is updated
}
}
*/
// Hand unroll
if (axis_t[0] <= axis_t[1] && axis_t[0] <= axis_t[2]) {
// Update current t
tnow = axis_t[0];
// Update t candidates
if (raydir[0] > 0) {
axis_int[0] += 1;
if (axis_int[0] >= p.voxel_dims[0]) {
quit = true;
}
axis_t[0] = ((float)(axis_int[0] + 1) - rayori[0]) / raydir[0];
} else {
axis_int[0] -= 1;
if (axis_int[0] < 0) {
quit = true;
}
axis_t[0] = ((float)axis_int[0] - rayori[0]) / raydir[0];
}
} else if (axis_t[1] <= axis_t[2]) {
tnow = axis_t[1];
if (raydir[1] > 0) {
axis_int[1] += 1;
if (axis_int[1] >= p.voxel_dims[1]) {
quit = true;
}
axis_t[1] = ((float)(axis_int[1] + 1) - rayori[1]) / raydir[1];
} else {
axis_int[1] -= 1;
if (axis_int[1] < 0) {
quit = true;
}
axis_t[1] = ((float)axis_int[1] - rayori[1]) / raydir[1];
}
} else {
tnow = axis_t[2];
if (raydir[2] > 0) {
axis_int[2] += 1;
if (axis_int[2] >= p.voxel_dims[2]) {
quit = true;
}
axis_t[2] = ((float)(axis_int[2] + 1) - rayori[2]) / raydir[2];
} else {
axis_int[2] -= 1;
if (axis_int[2] < 0) {
quit = true;
}
axis_t[2] = ((float)axis_int[2] - rayori[2]) / raydir[2];
}
}
if (quit) {
break;
}
// Skip empty space
// Could there be deadlock if the ray direction is away from the world?
if (axis_int[0] < 0 || axis_int[0] >= p.voxel_dims[0] ||
axis_int[1] < 0 || axis_int[1] >= p.voxel_dims[1] ||
axis_int[2] < 0 || axis_int[2] >= p.voxel_dims[2]) {
continue;
}
// Test intersection using voxel grid
blk_id = in_voxel[axis_int[0] * p.voxel_strides[0] +
axis_int[1] * p.voxel_strides[1] +
axis_int[2] * p.voxel_strides[2]];
if (blk_id == 0) {
continue;
}
// Now that there is an intersection
t = tnow;
// Calculate t2
/*
#pragma unroll
for (int i=0; i<3; i++) {
if (axis_t[i] <= axis_t[(i+1)%3] && axis_t[i] <= axis_t[(i+2)%3]) {
t2 = axis_t[i];
break;
}
}
*/
// Hand unroll
if (axis_t[0] <= axis_t[1] && axis_t[0] <= axis_t[2]) {
t2 = axis_t[0];
} else if (axis_t[1] <= axis_t[2]) {
t2 = axis_t[1];
} else {
t2 = axis_t[2];
}
break;
} // while !quit (ray marching loop)
out_depth[pix_index * p.max_samples + cur_plane] = t;
out_depth[p.img_dims[0] * p.img_dims[1] * p.max_samples +
pix_index * p.max_samples + cur_plane] = t2;
out_voxel_id[pix_index * p.max_samples + cur_plane] = blk_id;
} // cur_plane
}
/*
out:
out_voxel_id: torch CUDA int32 [ img_dims[0], img_dims[1],
max_samples, 1] out_depth: torch CUDA float [2, img_dims[0], img_dims[1],
max_samples, 1] out_raydirs: torch CUDA float [ img_dims[0], img_dims[1],
1, 3] in: in_voxel: torch CUDA int32 [X, Y, Z] [40, 512, 512] cam_ori:
torch float [3] cam_dir: torch float [3] cam_up: torch
float [3] cam_f: float cam_c: int [2]
img_dims: int [2]
max_samples: int
*/
std::vector<torch::Tensor> ray_voxel_intersection_perspective_cuda(
const torch::Tensor &in_voxel, const torch::Tensor &cam_ori,
const torch::Tensor &cam_dir, const torch::Tensor &cam_up, float cam_f,
const std::vector<float> &cam_c, const std::vector<int> &img_dims,
int max_samples) {
CHECK_CUDA(in_voxel);
int curDevice = -1;
cudaGetDevice(&curDevice);
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
torch::Device device = in_voxel.device();
// assert(in_voxel.dtype() == torch::kU8);
assert(in_voxel.dtype() == torch::kInt32); // Minecraft compatibility
assert(in_voxel.dim() == 3);
assert(cam_ori.dtype() == torch::kFloat32);
assert(cam_ori.numel() == 3);
assert(cam_dir.dtype() == torch::kFloat32);
assert(cam_dir.numel() == 3);
assert(cam_up.dtype() == torch::kFloat32);
assert(cam_up.numel() == 3);
assert(img_dims.size() == 2);
RVIP_Params p;
// Calculate camera rays
const torch::Tensor cam_ori_c = cam_ori.cpu();
const torch::Tensor cam_dir_c = cam_dir.cpu();
const torch::Tensor cam_up_c = cam_up.cpu();
// Get the coordinate frame of camera space in world space
normalize<float, 3>(p.cam_fwd, cam_dir_c.data_ptr<float>());
cross<float>(p.cam_side, p.cam_fwd, cam_up_c.data_ptr<float>());
normalize<float, 3>(p.cam_side);
cross<float>(p.cam_up, p.cam_side, p.cam_fwd);
normalize<float, 3>(p.cam_up); // Not absolutely necessary as both vectors are
// normalized. But just in case...
copyarr<float, 3>(p.cam_ori, cam_ori_c.data_ptr<float>());
p.cam_f = cam_f;
p.cam_c[0] = cam_c[0];
p.cam_c[1] = cam_c[1];
p.max_samples = max_samples;
// printf("[Renderer] max_dist: %ld\n", max_dist);
p.voxel_dims[0] = in_voxel.size(0);
p.voxel_dims[1] = in_voxel.size(1);
p.voxel_dims[2] = in_voxel.size(2);
p.voxel_strides[0] = in_voxel.stride(0);
p.voxel_strides[1] = in_voxel.stride(1);
p.voxel_strides[2] = in_voxel.stride(2);
// printf("[Renderer] Voxel resolution: %ld, %ld, %ld\n", p.voxel_dims[0],
// p.voxel_dims[1], p.voxel_dims[2]);
p.img_dims[0] = img_dims[0];
p.img_dims[1] = img_dims[1];
// Create output tensors
// For Minecraft Seg Mask
torch::Tensor out_voxel_id =
torch::empty({p.img_dims[0], p.img_dims[1], p.max_samples, 1},
torch::TensorOptions().dtype(torch::kInt32).device(device));
torch::Tensor out_depth;
// Produce two sets of localcoords, one for entry point, the other one for
// exit point. They share the same corner_ids.
out_depth = torch::empty(
{2, p.img_dims[0], p.img_dims[1], p.max_samples, 1},
torch::TensorOptions().dtype(torch::kFloat32).device(device));
torch::Tensor out_raydirs = torch::empty({p.img_dims[0], p.img_dims[1], 1, 3},
torch::TensorOptions()
.dtype(torch::kFloat32)
.device(device)
.requires_grad(false));
const int TILE_DIM = 8;
dim3 dimGrid((p.img_dims[1] + TILE_DIM - 1) / TILE_DIM,
(p.img_dims[0] + TILE_DIM - 1) / TILE_DIM, 1);
dim3 dimBlock(TILE_DIM, TILE_DIM, 1);
ray_voxel_intersection_perspective_kernel<TILE_DIM>
<<<dimGrid, dimBlock, 0, stream>>>(
out_voxel_id.data_ptr<int32_t>(), out_depth.data_ptr<float>(),
out_raydirs.data_ptr<float>(), in_voxel.data_ptr<int32_t>(), p);
return {out_voxel_id, out_depth, out_raydirs};
}
|