File size: 15,519 Bytes
829e08b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3362da1
8f1810a
829e08b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9980d9
 
 
8051051
d9980d9
8051051
1a5e7ce
8051051
13bd72c
 
 
d9980d9
 
 
 
 
 
 
 
 
 
 
 
c8dee32
d9980d9
4153d83
d9980d9
 
 
 
 
829e08b
e4f8734
829e08b
d9980d9
829e08b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9980d9
 
829e08b
12d3833
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import time
import glob
import json
import yaml
import torch
import trimesh
import argparse
import mesh2sdf.core
import numpy as np
import skimage.measure
import seaborn as sns
from scipy.spatial.transform import Rotation
from mesh_to_sdf import get_surface_point_cloud
from accelerate.utils import set_seed
from accelerate import Accelerator
from huggingface_hub.file_download import hf_hub_download
from huggingface_hub import list_repo_files

from primitive_anything.utils import path_mkdir, count_parameters
from primitive_anything.utils.logger import print_log

os.environ['PYOPENGL_PLATFORM'] = 'egl'

import spaces

repo_id = "hyz317/PrimitiveAnything"
all_files = list_repo_files(repo_id, revision="main")
for file in all_files:
    if os.path.exists(file):
        continue
    hf_hub_download(repo_id, file, local_dir="./ckpt")
hf_hub_download("Maikou/Michelangelo", "checkpoints/aligned_shape_latents/shapevae-256.ckpt", local_dir="./ckpt")

def parse_args():
    parser = argparse.ArgumentParser(description='Process 3D model files')
    
    parser.add_argument(
        '--input',
        type=str,
        default='./data/demo_glb/',
        help='Input file or directory path (default: ./data/demo_glb/)'
    )
    
    parser.add_argument(
        '--log_path',
        type=str,
        default='./results/demo',
        help='Output directory path (default: results/demo)'
    )
    
    return parser.parse_args()

def get_input_files(input_path):
    if os.path.isfile(input_path):
        return [input_path]
    elif os.path.isdir(input_path):
        return glob.glob(os.path.join(input_path, '*'))
    else:
        raise ValueError(f"Input path {input_path} is neither a file nor a directory")

args = parse_args()

LOG_PATH = args.log_path
os.makedirs(LOG_PATH, exist_ok=True)

print(f"Output directory: {LOG_PATH}")

CODE_SHAPE = {
    0: 'SM_GR_BS_CubeBevel_001.ply',
    1: 'SM_GR_BS_SphereSharp_001.ply',
    2: 'SM_GR_BS_CylinderSharp_001.ply',
}

shapename_map = {
    'SM_GR_BS_CubeBevel_001.ply': 1101002001034001,
    'SM_GR_BS_SphereSharp_001.ply': 1101002001034010,
    'SM_GR_BS_CylinderSharp_001.ply': 1101002001034002,
}

#### config
bs_dir = 'data/basic_shapes_norm'
config_path = './configs/infer.yml'
AR_checkpoint_path = './ckpt/mesh-transformer.ckpt.60.pt'
temperature= 0.0
#### init model
mesh_bs = {}
for bs_path in glob.glob(os.path.join(bs_dir, '*.ply')):
    bs_name = os.path.basename(bs_path)
    bs = trimesh.load(bs_path)
    bs.visual.uv = np.clip(bs.visual.uv, 0, 1)
    bs.visual = bs.visual.to_color()
    mesh_bs[bs_name] = bs

def create_model(cfg_model):
    kwargs = cfg_model
    name = kwargs.pop('name')
    model = get_model(name)(**kwargs)
    print_log("Model '{}' init: nb_params={:,}, kwargs={}".format(name, count_parameters(model), kwargs))
    return model

from primitive_anything.primitive_transformer import PrimitiveTransformerDiscrete
def get_model(name):
    return {
        'discrete': PrimitiveTransformerDiscrete,
    }[name]

with open(config_path, mode='r') as fp:
    AR_train_cfg = yaml.load(fp, Loader=yaml.FullLoader)

AR_checkpoint = torch.load(AR_checkpoint_path)

transformer = create_model(AR_train_cfg['model'])
transformer.load_state_dict(AR_checkpoint)

device = torch.device('cuda')
accelerator = Accelerator(
    mixed_precision='fp16',
)
transformer = accelerator.prepare(transformer)
transformer.eval()
transformer.bs_pc = transformer.bs_pc.cuda()
transformer.rotation_matrix_align_coord = transformer.rotation_matrix_align_coord.cuda()
print('model loaded to device')


def sample_surface_points(mesh, number_of_points=500000, surface_point_method='scan', sign_method='normal',
                          scan_count=100, scan_resolution=400, sample_point_count=10000000, return_gradients=False,
                          return_surface_pc_normals=False, normalized=False):
    sample_start = time.time()
    if surface_point_method == 'sample' and sign_method == 'depth':
        print("Incompatible methods for sampling points and determining sign, using sign_method='normal' instead.")
        sign_method = 'normal'

    surface_start = time.time()
    bound_radius = 1 if normalized else None
    surface_point_cloud = get_surface_point_cloud(mesh, surface_point_method, bound_radius, scan_count, scan_resolution,
                                                  sample_point_count,
                                                  calculate_normals=sign_method == 'normal' or return_gradients)

    surface_end = time.time()
    print('surface point cloud time cost :', surface_end - surface_start)

    normal_start = time.time()
    if return_surface_pc_normals:
        rng = np.random.default_rng()
        assert surface_point_cloud.points.shape[0] == surface_point_cloud.normals.shape[0]
        indices = rng.choice(surface_point_cloud.points.shape[0], number_of_points, replace=True)
        points = surface_point_cloud.points[indices]
        normals = surface_point_cloud.normals[indices]
        surface_points = np.concatenate([points, normals], axis=-1)
    else:
        surface_points = surface_point_cloud.get_random_surface_points(number_of_points, use_scans=True)
    normal_end = time.time()
    print('normal time cost :', normal_end - normal_start)
    sample_end = time.time()
    print('sample surface point time cost :', sample_end - sample_start)
    return surface_points


def normalize_vertices(vertices, scale=0.9):
    bbmin, bbmax = vertices.min(0), vertices.max(0)
    center = (bbmin + bbmax) * 0.5
    scale = 2.0 * scale / (bbmax - bbmin).max()
    vertices = (vertices - center) * scale
    return vertices, center, scale


def export_to_watertight(normalized_mesh, octree_depth: int = 7):
    """
        Convert the non-watertight mesh to watertight.

        Args:
            input_path (str): normalized path
            octree_depth (int):

        Returns:
            mesh(trimesh.Trimesh): watertight mesh

        """
    size = 2 ** octree_depth
    level = 2 / size

    scaled_vertices, to_orig_center, to_orig_scale = normalize_vertices(normalized_mesh.vertices)
    sdf = mesh2sdf.core.compute(scaled_vertices, normalized_mesh.faces, size=size)
    vertices, faces, normals, _ = skimage.measure.marching_cubes(np.abs(sdf), level)

    # watertight mesh
    vertices = vertices / size * 2 - 1 # -1 to 1
    vertices = vertices / to_orig_scale + to_orig_center
    mesh = trimesh.Trimesh(vertices, faces, normals=normals)

    return mesh


def process_mesh_to_surface_pc(mesh_list, marching_cubes=False, dilated_offset=0.0, sample_num=10000):
    # mesh_list : list of trimesh
    pc_normal_list = []
    return_mesh_list = []
    for mesh in mesh_list:
        if marching_cubes:
            mesh = export_to_watertight(mesh)
            print("MC over!")
        if dilated_offset > 0:
            new_vertices = mesh.vertices + mesh.vertex_normals * dilated_offset
            mesh.vertices = new_vertices
            print("dilate over!")

        mesh.merge_vertices()
        mesh.update_faces(mesh.unique_faces())
        mesh.fix_normals()

        return_mesh_list.append(mesh)

        pc_normal = np.asarray(sample_surface_points(mesh, sample_num, return_surface_pc_normals=True))
        pc_normal_list.append(pc_normal)
        print("process mesh success")
    return pc_normal_list, return_mesh_list


####    utils
def euler_to_quat(euler):
    return Rotation.from_euler('XYZ', euler, degrees=True).as_quat()

def SRT_quat_to_matrix(scale, quat, translation):
    rotation_matrix = Rotation.from_quat(quat).as_matrix()
    transform_matrix = np.eye(4)
    transform_matrix[:3, :3] = rotation_matrix * scale
    transform_matrix[:3, 3] = translation
    return transform_matrix


def write_output(primitives, name):
    out_json = {}
    out_json['operation'] = 0
    out_json['type'] = 1
    out_json['scene_id'] = None

    new_group = []
    model_scene = trimesh.Scene()
    color_map = sns.color_palette("hls", primitives['type_code'].squeeze().shape[0])
    color_map = (np.array(color_map) * 255).astype("uint8")
    for idx, (scale, rotation, translation, type_code) in enumerate(zip(
        primitives['scale'].squeeze().cpu().numpy(),
        primitives['rotation'].squeeze().cpu().numpy(),
        primitives['translation'].squeeze().cpu().numpy(),
        primitives['type_code'].squeeze().cpu().numpy()
    )):
        if type_code == -1:
            break
        bs_name = CODE_SHAPE[type_code]
        new_block = {}
        new_block['type_id'] = shapename_map[bs_name]
        new_block['data'] = {}
        new_block['data']['location'] = translation.tolist()
        new_block['data']['rotation'] = euler_to_quat(rotation).tolist()
        new_block['data']['scale'] = scale.tolist()
        new_block['data']['color'] = ['808080']
        new_group.append(new_block)

        trans = SRT_quat_to_matrix(scale, euler_to_quat(rotation), translation)
        bs = mesh_bs[bs_name].copy().apply_transform(trans)
        new_vertex_colors = np.repeat(color_map[idx:idx+1], bs.visual.vertex_colors.shape[0], axis=0)
        bs.visual.vertex_colors[:, :3] = new_vertex_colors
        vertices = bs.vertices.copy()
        vertices[:, 1] = bs.vertices[:, 2]
        vertices[:, 2] = -bs.vertices[:, 1]
        bs.vertices = vertices
        model_scene.add_geometry(bs)
    out_json['group'] = new_group

    json_path = os.path.join(LOG_PATH, f'output_{name}.json')
    with open(json_path, 'w') as json_file:
        json.dump(out_json, json_file, indent=4)

    glb_path = os.path.join(LOG_PATH, f'output_{name}.glb')
    model_scene.export(glb_path)

    return glb_path, out_json


@torch.no_grad()
def do_inference(input_3d, dilated_offset=0.0, sample_seed=0, do_sampling=False, do_marching_cubes=False, postprocess='none'):
    t1 = time.time()
    set_seed(sample_seed)
    input_mesh = trimesh.load(input_3d, force='mesh')

    # scale mesh
    vertices = input_mesh.vertices
    bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
    vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
    vertices = vertices / (bounds[1] - bounds[0]).max() * 1.6
    input_mesh.vertices = vertices

    pc_list, mesh_list = process_mesh_to_surface_pc(
        [input_mesh],
        marching_cubes=do_marching_cubes,
        dilated_offset=dilated_offset
    )
    pc_normal = pc_list[0] # 10000, 6
    mesh = mesh_list[0]

    pc_coor = pc_normal[:, :3]
    normals = pc_normal[:, 3:]

    if dilated_offset > 0:
        # scale mesh and pc
        vertices = mesh.vertices
        bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
        vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
        vertices = vertices / (bounds[1] - bounds[0]).max() * 1.6
        mesh.vertices = vertices
        pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
        pc_coor = pc_coor / (bounds[1] - bounds[0]).max() * 1.6

    input_save_name = os.path.join(LOG_PATH, f'processed_{os.path.basename(input_3d)}')
    mesh.export(input_save_name)

    assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), 'normals should be unit vectors, something wrong'
    normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)

    input_pc = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]

    with accelerator.autocast():
        if postprocess == 'postprocess1':
            recon_primitives, mask = transformer.generate_w_recon_loss(pc=input_pc, temperature=temperature, single_directional=True)
        else:
            recon_primitives, mask = transformer.generate(pc=input_pc, temperature=temperature)

    output_glb, output_json = write_output(recon_primitives, os.path.basename(input_3d)[:-4])

    return input_save_name, output_glb, output_json


import gradio as gr

@spaces.GPU
def process_3d_model(input_3d, dilated_offset, do_marching_cubes, postprocess_method="postprocess1"):
    print(f"processing: {input_3d}")
    # try:
    preprocess_model_obj, output_model_obj, output_model_json = do_inference(
        input_3d,
        dilated_offset=dilated_offset,
        do_marching_cubes=do_marching_cubes,
        postprocess=postprocess_method
    )
    return output_model_obj
    # except Exception as e:
    #     return f"Error processing file: {str(e)}"


_HEADER_ = '''
<h2><b>[SIGGRAPH 2025] PrimitiveAnything πŸ€— Gradio Demo</b></h2>

This is official demo for our SIGGRAPH 2025 paper <a href="">PrimitiveAnything: Human-Crafted 3D Primitive Assembly Generation with Auto-Regressive Transformer</a>.

Code: <a href='https://github.com/PrimitiveAnything/PrimitiveAnything' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2505.04622' target='_blank'>ArXiv</a>.

❗️❗️❗️**Important Notes:**
- Currently our demo supports 3D models only. You can use other text- and image-conditioned models (e.g. [Tencent Hunyuan3D](https://huggingface.co/spaces/tencent/Hunyuan3D-2) or [TRELLIS](https://huggingface.co/spaces/theseanlavery/TRELLIS-3D)) to generate 3D models and then upload them here.
- For optimal results with fine structures, we apply marching cubes and dilation operations by default (which differs from testing and evaluation). This prevents quality degradation in thin areas.
'''

_CITE_ = r"""
If PrimitiveAnything is helpful, please help to ⭐ the <a href='https://github.com/PrimitiveAnything/PrimitiveAnything' target='_blank'>GitHub Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/PrimitiveAnything/PrimitiveAnything?style=social)](https://github.com/PrimitiveAnything/PrimitiveAnything)
---
πŸ“ **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@misc{ye2025primitiveanything,
    title={PrimitiveAnything: Human-Crafted 3D Primitive Assembly Generation with Auto-Regressive Transformer}, 
    author={Jingwen Ye and Yuze He and Yanning Zhou and Yiqin Zhu and Kaiwen Xiao and Yong-Jin Liu and Wei Yang and Xiao Han},
    year={2025},
    eprint={2505.04622},
    archivePrefix={arXiv},
    primaryClass={cs.GR}
}
```
πŸ“§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>hyz22@mails.tsinghua.edu.cn</b>.
"""

with gr.Blocks(title="PrimitiveAnything: Human-Crafted 3D Primitive Assembly Generation with Auto-Regressive Transformer") as demo:
    # Title section
    gr.Markdown(_HEADER_)
    
    with gr.Row():
        with gr.Column():
            # Input components
            input_3d = gr.Model3D(label="Upload 3D Model File")
            dilated_offset = gr.Number(label="Dilated Offset", value=0.015)
            do_marching_cubes = gr.Checkbox(label="Perform Marching Cubes", value=True)
            submit_btn = gr.Button("Process Model")
            
        with gr.Column():
            # Output components
            output = gr.Model3D(label="Primitive Assembly Predition")
            
    submit_btn.click(
        fn=process_3d_model,
        inputs=[input_3d, dilated_offset, do_marching_cubes],
        outputs=output
    )
    

    # Prepare examples properly
    example_files = [ [f] for f in glob.glob('./data/demo_glb/*.glb') ]  # Note: wrapped in list and filtered for GLB

    example = gr.Examples(
        examples=example_files,
        inputs=[input_3d],  # Only include the Model3D input
        examples_per_page=14,
    )

    gr.Markdown(_CITE_)

if __name__ == "__main__":
    demo.launch(ssr_mode=False)