File size: 5,791 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import os

import cv2
import gradio as gr
import kornia
import numpy as np
import torch
from loguru import logger

from benchmark.face_pipeline import alignFace
from benchmark.face_pipeline import FaceDetector
from benchmark.face_pipeline import inverse_transform_batch
from benchmark.face_pipeline import SoftErosion
from configs.train_config import TrainConfig
from models.model import HifiFace


class ImageSwap:
    def __init__(self, cfg, model=None):
        self.device = cfg.device
        self.facedetector = FaceDetector(cfg.face_detector_weights, device=self.device)
        self.alignface = alignFace()

        opt = TrainConfig()
        opt.use_ddp = False

        checkpoint = (cfg.model_path, cfg.model_idx)
        if model is None:
            self.model = HifiFace(
                opt.identity_extractor_config, is_training=False, device=self.device, load_checkpoint=checkpoint
            )
        else:
            self.model = model
        self.model.eval()

        self.smooth_mask = SoftErosion(kernel_size=7, threshold=0.9, iterations=7).to(self.device)

    def _geometry_transfrom_warp_affine(self, swapped_image, inv_att_transforms, frame_size, square_mask):
        swapped_image = kornia.geometry.transform.warp_affine(
            swapped_image,
            inv_att_transforms,
            frame_size,
            mode="bilinear",
            padding_mode="border",
            align_corners=True,
            fill_value=torch.zeros(3),
        )

        square_mask = kornia.geometry.transform.warp_affine(
            square_mask,
            inv_att_transforms,
            frame_size,
            mode="bilinear",
            padding_mode="zeros",
            align_corners=True,
            fill_value=torch.zeros(3),
        )
        return swapped_image, square_mask

    def detect_and_align(self, image):
        detection = self.facedetector(image)
        if detection.score is None:
            self.kps_window = []
            return None, None
        max_score_ind = np.argmax(detection.score, axis=0)
        kps = detection.key_points[max_score_ind]
        align_img, warp_mat = self.alignface.align_face(image, kps, 256)
        align_img = cv2.resize(align_img, (256, 256))
        align_img = align_img.transpose(2, 0, 1)
        align_img = torch.from_numpy(align_img).unsqueeze(0).to(self.device).float()
        align_img = align_img / 255.0
        return align_img, warp_mat

    def inference(self, source_face, target_face, shape_rate, id_rate, iterations=1):
        src = source_face
        src, _ = self.detect_and_align(src)
        if src is None:
            print("no face in src_img")
            return
        target = target_face
        align_target, warp_mat = self.detect_and_align(target)
        if align_target is None:
            print("no face in target_img")
            return
        logger.info("start swapping")
        frame_size = (target.shape[0], target.shape[1])
        with torch.no_grad():
            for _ in range(iterations):
                swapped_face, m_r = self.model.forward(src, align_target, shape_rate, id_rate)
                swapped_face = torch.clamp(swapped_face, 0, 1)
                align_target = swapped_face
            smooth_face_mask, _ = self.smooth_mask(m_r)
        warp_mat = torch.from_numpy(warp_mat).float().unsqueeze(0)
        inverse_warp_mat = inverse_transform_batch(warp_mat, device=self.device)
        swapped_face, smooth_face_mask = self._geometry_transfrom_warp_affine(
            swapped_face, inverse_warp_mat, frame_size, smooth_face_mask
        )
        target = torch.from_numpy(target.transpose(2, 0, 1)).unsqueeze(0).to(self.device).float() / 255.0
        result_face = (1 - smooth_face_mask) * target + smooth_face_mask * swapped_face
        result_face = torch.clamp(result_face * 255.0, 0.0, 255.0, out=None).type(dtype=torch.uint8)
        result_face = result_face.detach().cpu().numpy()
        img = result_face.transpose(0, 2, 3, 1)[0]

        return img


class ConfigPath:
    face_detector_weights = "/data/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx"
    model_path = ""
    model_idx = 80000
    device = "cuda"


def main():
    cfg = ConfigPath()
    parser = argparse.ArgumentParser(
        prog="benchmark", description="What the program does", epilog="Text at the bottom of help"
    )
    parser.add_argument("-m", "--model_path")
    parser.add_argument("-i", "--model_idx")
    parser.add_argument("-d", "--device", default="cuda")

    args = parser.parse_args()

    cfg.model_path = args.model_path
    cfg.model_idx = int(args.model_idx)

    cfg.device = args.device
    infer = ImageSwap(cfg)

    def inference(source_face, target_face, shape_rate, id_rate):
        return infer.inference(source_face, target_face, shape_rate, id_rate)

    output = gr.Image(shape=None, label="换脸结果")
    demo = gr.Interface(
        fn=inference,
        inputs=[
            gr.Image(shape=None, label="选脸图"),
            gr.Image(shape=None, label="目标图"),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=1.0,
                step=0.1,
                label="3d结构相似度(1.0表示完全替换)",
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=1.0,
                step=0.1,
                label="人脸特征相似度(1.0表示完全替换)",
            ),
        ],
        outputs=output,
        title="HiConFace人脸融合系统",
        description="v1.0: developed by yiwise CV group",
    )
    demo.launch(server_name="0.0.0.0", server_port=7860)

    infer.inference()


if __name__ == "__main__":
    main()