File size: 5,165 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
54a5078
83d8d3c
 
 
 
 
 
 
 
 
 
 
54a5078
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
54a5078
 
83d8d3c
 
54a5078
83d8d3c
54a5078
83d8d3c
 
 
54a5078
 
83d8d3c
 
54a5078
83d8d3c
 
 
54a5078
 
83d8d3c
 
54a5078
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a5078
83d8d3c
 
54a5078
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a5078
 
83d8d3c
54a5078
 
 
 
 
 
83d8d3c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse

import gradio as gr

from benchmark.app_image import ImageSwap
from benchmark.app_video import VideoSwap
from configs.train_config import TrainConfig
from models.model import HifiFace


class ConfigPath:
    face_detector_weights = "/checkpoints/face_detector/face_detector_scrfd_10g_bnkps.onnx"
    model_path = ""
    model_idx = 80000
    ffmpeg_device = "cuda"
    device = "cuda"


def main():
    cfg = ConfigPath()
    parser = argparse.ArgumentParser(
        prog="benchmark", description="What the program does", epilog="Text at the bottom of help"
    )
    parser.add_argument("-m", "--model_path", default="/checkpoints/hififace_pretrained/standard_model")
    parser.add_argument("-i", "--model_idx", default="320000")
    parser.add_argument("-f", "--ffmpeg_device", default="cpu")
    parser.add_argument("-d", "--device", default="cpu")

    args = parser.parse_args()

    cfg.model_path = args.model_path
    cfg.model_idx = int(args.model_idx)
    cfg.ffmpeg_device = args.ffmpeg_device
    cfg.device = args.device
    opt = TrainConfig()
    checkpoint = (cfg.model_path, cfg.model_idx)
    model_path_1 = "/checkpoints/hififace_pretrained/with_gaze_and_mouth"
    checkpoint1 = ("/checkpoints/hififace_pretrained/with_gaze_and_mouth", "190000")
    model = HifiFace(opt.identity_extractor_config, is_training=False, device=cfg.device, load_checkpoint=checkpoint)

    model1 = HifiFace(opt.identity_extractor_config, is_training=False, device=cfg.device, load_checkpoint=checkpoint1)
    image_infer = ImageSwap(cfg, model)
    image_infer1 = ImageSwap(cfg, model1)
    def inference_image(source_face, target_face, shape_rate, id_rate, iterations):
        return image_infer.inference(source_face, target_face, shape_rate, id_rate, int(iterations))

    def inference_image1(source_face, target_face, shape_rate, id_rate, iterations):
        return image_infer1.inference(source_face, target_face, shape_rate, id_rate, int(iterations))

    model_name = cfg.model_path.split("/")[-1] + ":" + f"{cfg.model_idx}"
    model_name1 = model_path_1.split("/")[-1] + ":" + "190000"
    with gr.Blocks(title="FaceSwap") as demo:
        gr.Markdown(
            f"""
        ### standard model: {model_name} \n
        ### model with eye and mouth hm loss: {model_name1}
        """
        )
        with gr.Tab("Image swap with standard model"):
            with gr.Row():
                source_image = gr.Image(shape=None, label="source image")
                target_image = gr.Image(shape=None, label="target image")
            with gr.Row():
                with gr.Column():
                    structure_sim = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=1.0,
                        step=0.1,
                        label="3d similarity",
                    )
                    id_sim = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=1.0,
                        step=0.1,
                        label="id similarity",
                    )
                    iters = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=1,
                        step=1,
                        label="iters",
                    )
                    image_btn = gr.Button("image swap")
                output_image = gr.Image(shape=None, label="Result")

            image_btn.click(
                fn=inference_image,
                inputs=[source_image, target_image, structure_sim, id_sim, iters],
                outputs=output_image,
            )

        with gr.Tab("Image swap with eye&mouth hm loss model"):
            with gr.Row():
                source_image = gr.Image(shape=None, label="source image")
                target_image = gr.Image(shape=None, label="target image")
            with gr.Row():
                with gr.Column():
                    structure_sim = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=1.0,
                        step=0.1,
                        label="3d similarity",
                    )
                    id_sim = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=1.0,
                        step=0.1,
                        label="id similarity",
                    )
                    iters = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=1,
                        step=1,
                        label="iters",
                    )
                    image_btn = gr.Button("image swap")
                output_image = gr.Image(shape=None, label="Result")

            image_btn.click(
                fn=inference_image1,
                inputs=[source_image, target_image, structure_sim, id_sim, iters],
                outputs=output_image,
            )
        demo.launch(server_name="0.0.0.0", server_port=7860)


if __name__ == "__main__":
    main()