Spaces:
Runtime error
Runtime error
File size: 5,664 Bytes
83d8d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
"""This script is to generate skin attention mask for Deep3DFaceRecon_pytorch
"""
import math
import os
import cv2
import numpy as np
class GMM:
def __init__(self, dim, num, w, mu, cov, cov_det, cov_inv):
self.dim = dim # feature dimension
self.num = num # number of Gaussian components
self.w = w # weights of Gaussian components (a list of scalars)
self.mu = mu # mean of Gaussian components (a list of 1xdim vectors)
self.cov = cov # covariance matrix of Gaussian components (a list of dimxdim matrices)
self.cov_det = cov_det # pre-computed determinet of covariance matrices (a list of scalars)
self.cov_inv = cov_inv # pre-computed inverse covariance matrices (a list of dimxdim matrices)
self.factor = [0] * num
for i in range(self.num):
self.factor[i] = (2 * math.pi) ** (self.dim / 2) * self.cov_det[i] ** 0.5
def likelihood(self, data):
assert data.shape[1] == self.dim
N = data.shape[0]
lh = np.zeros(N)
for i in range(self.num):
data_ = data - self.mu[i]
tmp = np.matmul(data_, self.cov_inv[i]) * data_
tmp = np.sum(tmp, axis=1)
power = -0.5 * tmp
p = np.array([math.exp(power[j]) for j in range(N)])
p = p / self.factor[i]
lh += p * self.w[i]
return lh
def _rgb2ycbcr(rgb):
m = np.array([[65.481, 128.553, 24.966], [-37.797, -74.203, 112], [112, -93.786, -18.214]])
shape = rgb.shape
rgb = rgb.reshape((shape[0] * shape[1], 3))
ycbcr = np.dot(rgb, m.transpose() / 255.0)
ycbcr[:, 0] += 16.0
ycbcr[:, 1:] += 128.0
return ycbcr.reshape(shape)
def _bgr2ycbcr(bgr):
rgb = bgr[..., ::-1]
return _rgb2ycbcr(rgb)
gmm_skin_w = [0.24063933, 0.16365987, 0.26034665, 0.33535415]
gmm_skin_mu = [
np.array([113.71862, 103.39613, 164.08226]),
np.array([150.19858, 105.18467, 155.51428]),
np.array([183.92976, 107.62468, 152.71820]),
np.array([114.90524, 113.59782, 151.38217]),
]
gmm_skin_cov_det = [5692842.5, 5851930.5, 2329131.0, 1585971.0]
gmm_skin_cov_inv = [
np.array(
[
[0.0019472069, 0.0020450759, -0.00060243998],
[0.0020450759, 0.017700525, 0.0051420014],
[-0.00060243998, 0.0051420014, 0.0081308950],
]
),
np.array(
[
[0.0027110141, 0.0011036990, 0.0023122299],
[0.0011036990, 0.010707724, 0.010742856],
[0.0023122299, 0.010742856, 0.017481629],
]
),
np.array(
[
[0.0048026871, 0.00022935172, 0.0077668377],
[0.00022935172, 0.011729696, 0.0081661865],
[0.0077668377, 0.0081661865, 0.025374353],
]
),
np.array(
[
[0.0011989699, 0.0022453172, -0.0010748957],
[0.0022453172, 0.047758564, 0.020332102],
[-0.0010748957, 0.020332102, 0.024502251],
]
),
]
gmm_skin = GMM(3, 4, gmm_skin_w, gmm_skin_mu, [], gmm_skin_cov_det, gmm_skin_cov_inv)
gmm_nonskin_w = [0.12791070, 0.31130761, 0.34245777, 0.21832393]
gmm_nonskin_mu = [
np.array([99.200851, 112.07533, 140.20602]),
np.array([110.91392, 125.52969, 130.19237]),
np.array([129.75864, 129.96107, 126.96808]),
np.array([112.29587, 128.85121, 129.05431]),
]
gmm_nonskin_cov_det = [458703648.0, 6466488.0, 90611376.0, 133097.63]
gmm_nonskin_cov_inv = [
np.array(
[
[0.00085371657, 0.00071197288, 0.00023958916],
[0.00071197288, 0.0025935620, 0.00076557708],
[0.00023958916, 0.00076557708, 0.0015042332],
]
),
np.array(
[
[0.00024650150, 0.00045542428, 0.00015019422],
[0.00045542428, 0.026412144, 0.018419769],
[0.00015019422, 0.018419769, 0.037497383],
]
),
np.array(
[
[0.00037054974, 0.00038146760, 0.00040408765],
[0.00038146760, 0.0085505722, 0.0079136286],
[0.00040408765, 0.0079136286, 0.010982352],
]
),
np.array(
[
[0.00013709733, 0.00051228428, 0.00012777430],
[0.00051228428, 0.28237113, 0.10528370],
[0.00012777430, 0.10528370, 0.23468947],
]
),
]
gmm_nonskin = GMM(3, 4, gmm_nonskin_w, gmm_nonskin_mu, [], gmm_nonskin_cov_det, gmm_nonskin_cov_inv)
prior_skin = 0.8
prior_nonskin = 1 - prior_skin
# calculate skin attention mask
def skinmask(imbgr):
im = _bgr2ycbcr(imbgr)
data = im.reshape((-1, 3))
lh_skin = gmm_skin.likelihood(data)
lh_nonskin = gmm_nonskin.likelihood(data)
tmp1 = prior_skin * lh_skin
tmp2 = prior_nonskin * lh_nonskin
post_skin = tmp1 / (tmp1 + tmp2) # posterior probability
post_skin = post_skin.reshape((im.shape[0], im.shape[1]))
post_skin = np.round(post_skin * 255)
post_skin = post_skin.astype(np.uint8)
post_skin = np.tile(np.expand_dims(post_skin, 2), [1, 1, 3]) # reshape to H*W*3
return post_skin
def get_skin_mask(img_path):
print("generating skin masks......")
names = [i for i in sorted(os.listdir(img_path)) if "jpg" in i or "png" in i or "jpeg" in i or "PNG" in i]
save_path = os.path.join(img_path, "mask")
if not os.path.isdir(save_path):
os.makedirs(save_path)
for i in range(0, len(names)):
name = names[i]
print("%05d" % (i), " ", name)
full_image_name = os.path.join(img_path, name)
img = cv2.imread(full_image_name).astype(np.float32)
skin_img = skinmask(img)
cv2.imwrite(os.path.join(save_path, name), skin_img.astype(np.uint8))
|