File size: 5,664 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""This script is to generate skin attention mask for Deep3DFaceRecon_pytorch
"""
import math
import os

import cv2
import numpy as np


class GMM:
    def __init__(self, dim, num, w, mu, cov, cov_det, cov_inv):
        self.dim = dim  # feature dimension
        self.num = num  # number of Gaussian components
        self.w = w  # weights of Gaussian components (a list of scalars)
        self.mu = mu  # mean of Gaussian components (a list of 1xdim vectors)
        self.cov = cov  # covariance matrix of Gaussian components (a list of dimxdim matrices)
        self.cov_det = cov_det  # pre-computed determinet of covariance matrices (a list of scalars)
        self.cov_inv = cov_inv  # pre-computed inverse covariance matrices (a list of dimxdim matrices)

        self.factor = [0] * num
        for i in range(self.num):
            self.factor[i] = (2 * math.pi) ** (self.dim / 2) * self.cov_det[i] ** 0.5

    def likelihood(self, data):
        assert data.shape[1] == self.dim
        N = data.shape[0]
        lh = np.zeros(N)

        for i in range(self.num):
            data_ = data - self.mu[i]

            tmp = np.matmul(data_, self.cov_inv[i]) * data_
            tmp = np.sum(tmp, axis=1)
            power = -0.5 * tmp

            p = np.array([math.exp(power[j]) for j in range(N)])
            p = p / self.factor[i]
            lh += p * self.w[i]

        return lh


def _rgb2ycbcr(rgb):
    m = np.array([[65.481, 128.553, 24.966], [-37.797, -74.203, 112], [112, -93.786, -18.214]])
    shape = rgb.shape
    rgb = rgb.reshape((shape[0] * shape[1], 3))
    ycbcr = np.dot(rgb, m.transpose() / 255.0)
    ycbcr[:, 0] += 16.0
    ycbcr[:, 1:] += 128.0
    return ycbcr.reshape(shape)


def _bgr2ycbcr(bgr):
    rgb = bgr[..., ::-1]
    return _rgb2ycbcr(rgb)


gmm_skin_w = [0.24063933, 0.16365987, 0.26034665, 0.33535415]
gmm_skin_mu = [
    np.array([113.71862, 103.39613, 164.08226]),
    np.array([150.19858, 105.18467, 155.51428]),
    np.array([183.92976, 107.62468, 152.71820]),
    np.array([114.90524, 113.59782, 151.38217]),
]
gmm_skin_cov_det = [5692842.5, 5851930.5, 2329131.0, 1585971.0]
gmm_skin_cov_inv = [
    np.array(
        [
            [0.0019472069, 0.0020450759, -0.00060243998],
            [0.0020450759, 0.017700525, 0.0051420014],
            [-0.00060243998, 0.0051420014, 0.0081308950],
        ]
    ),
    np.array(
        [
            [0.0027110141, 0.0011036990, 0.0023122299],
            [0.0011036990, 0.010707724, 0.010742856],
            [0.0023122299, 0.010742856, 0.017481629],
        ]
    ),
    np.array(
        [
            [0.0048026871, 0.00022935172, 0.0077668377],
            [0.00022935172, 0.011729696, 0.0081661865],
            [0.0077668377, 0.0081661865, 0.025374353],
        ]
    ),
    np.array(
        [
            [0.0011989699, 0.0022453172, -0.0010748957],
            [0.0022453172, 0.047758564, 0.020332102],
            [-0.0010748957, 0.020332102, 0.024502251],
        ]
    ),
]

gmm_skin = GMM(3, 4, gmm_skin_w, gmm_skin_mu, [], gmm_skin_cov_det, gmm_skin_cov_inv)

gmm_nonskin_w = [0.12791070, 0.31130761, 0.34245777, 0.21832393]
gmm_nonskin_mu = [
    np.array([99.200851, 112.07533, 140.20602]),
    np.array([110.91392, 125.52969, 130.19237]),
    np.array([129.75864, 129.96107, 126.96808]),
    np.array([112.29587, 128.85121, 129.05431]),
]
gmm_nonskin_cov_det = [458703648.0, 6466488.0, 90611376.0, 133097.63]
gmm_nonskin_cov_inv = [
    np.array(
        [
            [0.00085371657, 0.00071197288, 0.00023958916],
            [0.00071197288, 0.0025935620, 0.00076557708],
            [0.00023958916, 0.00076557708, 0.0015042332],
        ]
    ),
    np.array(
        [
            [0.00024650150, 0.00045542428, 0.00015019422],
            [0.00045542428, 0.026412144, 0.018419769],
            [0.00015019422, 0.018419769, 0.037497383],
        ]
    ),
    np.array(
        [
            [0.00037054974, 0.00038146760, 0.00040408765],
            [0.00038146760, 0.0085505722, 0.0079136286],
            [0.00040408765, 0.0079136286, 0.010982352],
        ]
    ),
    np.array(
        [
            [0.00013709733, 0.00051228428, 0.00012777430],
            [0.00051228428, 0.28237113, 0.10528370],
            [0.00012777430, 0.10528370, 0.23468947],
        ]
    ),
]

gmm_nonskin = GMM(3, 4, gmm_nonskin_w, gmm_nonskin_mu, [], gmm_nonskin_cov_det, gmm_nonskin_cov_inv)

prior_skin = 0.8
prior_nonskin = 1 - prior_skin


# calculate skin attention mask
def skinmask(imbgr):
    im = _bgr2ycbcr(imbgr)

    data = im.reshape((-1, 3))

    lh_skin = gmm_skin.likelihood(data)
    lh_nonskin = gmm_nonskin.likelihood(data)

    tmp1 = prior_skin * lh_skin
    tmp2 = prior_nonskin * lh_nonskin
    post_skin = tmp1 / (tmp1 + tmp2)  # posterior probability

    post_skin = post_skin.reshape((im.shape[0], im.shape[1]))

    post_skin = np.round(post_skin * 255)
    post_skin = post_skin.astype(np.uint8)
    post_skin = np.tile(np.expand_dims(post_skin, 2), [1, 1, 3])  # reshape to H*W*3

    return post_skin


def get_skin_mask(img_path):
    print("generating skin masks......")
    names = [i for i in sorted(os.listdir(img_path)) if "jpg" in i or "png" in i or "jpeg" in i or "PNG" in i]
    save_path = os.path.join(img_path, "mask")
    if not os.path.isdir(save_path):
        os.makedirs(save_path)

    for i in range(0, len(names)):
        name = names[i]
        print("%05d" % (i), " ", name)
        full_image_name = os.path.join(img_path, name)
        img = cv2.imread(full_image_name).astype(np.float32)
        skin_img = skinmask(img)
        cv2.imwrite(os.path.join(save_path, name), skin_img.astype(np.uint8))