File size: 3,087 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""This script is the test script for Deep3DFaceRecon_pytorch
"""
import os

import numpy as np
import torch
from data import create_dataset
from data.flist_dataset import default_flist_reader
from options.test_options import TestOptions
from PIL import Image
from scipy.io import loadmat
from scipy.io import savemat
from util.load_mats import load_lm3d
from util.preprocess import align_img
from util.visualizer import MyVisualizer

from models import create_model


def get_data_path(root="examples"):

    im_path = [os.path.join(root, i) for i in sorted(os.listdir(root)) if i.endswith("png") or i.endswith("jpg")]
    lm_path = [i.replace("png", "txt").replace("jpg", "txt") for i in im_path]
    lm_path = [
        os.path.join(i.replace(i.split(os.path.sep)[-1], ""), "detections", i.split(os.path.sep)[-1]) for i in lm_path
    ]

    return im_path, lm_path


def read_data(im_path, lm_path, lm3d_std, to_tensor=True):
    # to RGB
    im = Image.open(im_path).convert("RGB")
    W, H = im.size
    lm = np.loadtxt(lm_path).astype(np.float32)
    lm = lm.reshape([-1, 2])
    lm[:, -1] = H - 1 - lm[:, -1]
    _, im, lm, _ = align_img(im, lm, lm3d_std)
    if to_tensor:
        im = torch.tensor(np.array(im) / 255.0, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0)
        lm = torch.tensor(lm).unsqueeze(0)
    return im, lm


def main(rank, opt, name="examples"):
    device = torch.device(rank)
    torch.cuda.set_device(device)
    model = create_model(opt)
    model.setup(opt)
    model.device = device
    model.parallelize()
    model.eval()
    visualizer = MyVisualizer(opt)

    im_path, lm_path = get_data_path(name)
    lm3d_std = load_lm3d(opt.bfm_folder)

    for i in range(len(im_path)):
        print(i, im_path[i])
        img_name = im_path[i].split(os.path.sep)[-1].replace(".png", "").replace(".jpg", "")
        if not os.path.isfile(lm_path[i]):
            print("%s is not found !!!" % lm_path[i])
            continue
        im_tensor, lm_tensor = read_data(im_path[i], lm_path[i], lm3d_std)
        data = {"imgs": im_tensor, "lms": lm_tensor}
        model.set_input(data)  # unpack data from data loader
        model.test()  # run inference
        visuals = model.get_current_visuals()  # get image results
        visualizer.display_current_results(
            visuals,
            0,
            opt.epoch,
            dataset=name.split(os.path.sep)[-1],
            save_results=True,
            count=i,
            name=img_name,
            add_image=False,
        )

        model.save_mesh(
            os.path.join(
                visualizer.img_dir, name.split(os.path.sep)[-1], "epoch_%s_%06d" % (opt.epoch, 0), img_name + ".obj"
            )
        )  # save reconstruction meshes
        model.save_coeff(
            os.path.join(
                visualizer.img_dir, name.split(os.path.sep)[-1], "epoch_%s_%06d" % (opt.epoch, 0), img_name + ".mat"
            )
        )  # save predicted coefficients


if __name__ == "__main__":
    opt = TestOptions().parse()  # get test options
    main(0, opt, opt.img_folder)