File size: 4,158 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""This script contains the training options for Deep3DFaceRecon_pytorch
"""
from util import util

from .base_options import BaseOptions


class TrainOptions(BaseOptions):
    """This class includes training options.

    It also includes shared options defined in BaseOptions.
    """

    def initialize(self, parser):
        parser = BaseOptions.initialize(self, parser)
        # dataset parameters
        # for train
        parser.add_argument("--data_root", type=str, default="./", help="dataset root")
        parser.add_argument(
            "--flist", type=str, default="datalist/train/masks.txt", help="list of mask names of training set"
        )
        parser.add_argument("--batch_size", type=int, default=32)
        parser.add_argument(
            "--dataset_mode", type=str, default="flist", help="chooses how datasets are loaded. [None | flist]"
        )
        parser.add_argument(
            "--serial_batches",
            action="store_true",
            help="if true, takes images in order to make batches, otherwise takes them randomly",
        )
        parser.add_argument("--num_threads", default=4, type=int, help="# threads for loading data")
        parser.add_argument(
            "--max_dataset_size",
            type=int,
            default=float("inf"),
            help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.",
        )
        parser.add_argument(
            "--preprocess",
            type=str,
            default="shift_scale_rot_flip",
            help="scaling and cropping of images at load time [shift_scale_rot_flip | shift_scale | shift | shift_rot_flip ]",
        )
        parser.add_argument(
            "--use_aug", type=util.str2bool, nargs="?", const=True, default=True, help="whether use data augmentation"
        )

        # for val
        parser.add_argument(
            "--flist_val", type=str, default="datalist/val/masks.txt", help="list of mask names of val set"
        )
        parser.add_argument("--batch_size_val", type=int, default=32)

        # visualization parameters
        parser.add_argument(
            "--display_freq", type=int, default=1000, help="frequency of showing training results on screen"
        )
        parser.add_argument(
            "--print_freq", type=int, default=100, help="frequency of showing training results on console"
        )

        # network saving and loading parameters
        parser.add_argument("--save_latest_freq", type=int, default=5000, help="frequency of saving the latest results")
        parser.add_argument(
            "--save_epoch_freq", type=int, default=1, help="frequency of saving checkpoints at the end of epochs"
        )
        parser.add_argument("--evaluation_freq", type=int, default=5000, help="evaluation freq")
        parser.add_argument("--save_by_iter", action="store_true", help="whether saves model by iteration")
        parser.add_argument("--continue_train", action="store_true", help="continue training: load the latest model")
        parser.add_argument(
            "--epoch_count",
            type=int,
            default=1,
            help="the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...",
        )
        parser.add_argument("--phase", type=str, default="train", help="train, val, test, etc")
        parser.add_argument("--pretrained_name", type=str, default=None, help="resume training from another checkpoint")

        # training parameters
        parser.add_argument("--n_epochs", type=int, default=20, help="number of epochs with the initial learning rate")
        parser.add_argument("--lr", type=float, default=0.0001, help="initial learning rate for adam")
        parser.add_argument(
            "--lr_policy", type=str, default="step", help="learning rate policy. [linear | step | plateau | cosine]"
        )
        parser.add_argument(
            "--lr_decay_epochs", type=int, default=10, help="multiply by a gamma every lr_decay_epochs epoches"
        )

        self.isTrain = True
        return parser