File size: 5,258 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torch.nn as nn


class AddCoordsTh(nn.Module):
    def __init__(self, x_dim=64, y_dim=64, with_r=False, with_boundary=False):
        super(AddCoordsTh, self).__init__()
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.with_r = with_r
        self.with_boundary = with_boundary

    def forward(self, input_tensor, heatmap=None):
        """
        input_tensor: (batch, c, x_dim, y_dim)
        """
        batch_size_tensor = input_tensor.shape[0]

        xx_ones = torch.ones([1, self.y_dim], dtype=torch.int32).to(input_tensor.device)
        xx_ones = xx_ones.unsqueeze(-1)

        xx_range = torch.arange(self.x_dim, dtype=torch.int32).unsqueeze(0).to(input_tensor.device)
        xx_range = xx_range.unsqueeze(1)

        xx_channel = torch.matmul(xx_ones.float(), xx_range.float())
        xx_channel = xx_channel.unsqueeze(-1)

        yy_ones = torch.ones([1, self.x_dim], dtype=torch.int32).to(input_tensor.device)
        yy_ones = yy_ones.unsqueeze(1)

        yy_range = torch.arange(self.y_dim, dtype=torch.int32).unsqueeze(0).to(input_tensor.device)
        yy_range = yy_range.unsqueeze(-1)

        yy_channel = torch.matmul(yy_range.float(), yy_ones.float())
        yy_channel = yy_channel.unsqueeze(-1)

        xx_channel = xx_channel.permute(0, 3, 2, 1)
        yy_channel = yy_channel.permute(0, 3, 2, 1)

        xx_channel = xx_channel / (self.x_dim - 1)
        yy_channel = yy_channel / (self.y_dim - 1)

        xx_channel = xx_channel * 2 - 1
        yy_channel = yy_channel * 2 - 1

        xx_channel = xx_channel.repeat(batch_size_tensor, 1, 1, 1)
        yy_channel = yy_channel.repeat(batch_size_tensor, 1, 1, 1)

        if self.with_boundary and type(heatmap) != type(None):
            boundary_channel = torch.clamp(heatmap[:, -1:, :, :], 0.0, 1.0)

            zero_tensor = torch.zeros_like(xx_channel)
            xx_boundary_channel = torch.where(boundary_channel > 0.05, xx_channel, zero_tensor)
            yy_boundary_channel = torch.where(boundary_channel > 0.05, yy_channel, zero_tensor)
        if self.with_boundary and type(heatmap) != type(None):
            xx_boundary_channel = xx_boundary_channel.to(input_tensor.device)
            yy_boundary_channel = yy_boundary_channel.to(input_tensor.device)
        ret = torch.cat([input_tensor, xx_channel, yy_channel], dim=1)

        if self.with_r:
            rr = torch.sqrt(torch.pow(xx_channel, 2) + torch.pow(yy_channel, 2))
            rr = rr / torch.max(rr)
            ret = torch.cat([ret, rr], dim=1)

        if self.with_boundary and type(heatmap) != type(None):
            ret = torch.cat([ret, xx_boundary_channel, yy_boundary_channel], dim=1)
        return ret


class CoordConvTh(nn.Module):
    """CoordConv layer as in the paper."""

    def __init__(self, x_dim, y_dim, with_r, with_boundary, in_channels, first_one=False, *args, **kwargs):
        super(CoordConvTh, self).__init__()
        self.addcoords = AddCoordsTh(x_dim=x_dim, y_dim=y_dim, with_r=with_r, with_boundary=with_boundary)
        in_channels += 2
        if with_r:
            in_channels += 1
        if with_boundary and not first_one:
            in_channels += 2
        self.conv = nn.Conv2d(in_channels=in_channels, *args, **kwargs)

    def forward(self, input_tensor, heatmap=None):
        ret = self.addcoords(input_tensor, heatmap)
        last_channel = ret[:, -2:, :, :]
        ret = self.conv(ret)
        return ret, last_channel


"""
An alternative implementation for PyTorch with auto-infering the x-y dimensions.
"""


class AddCoords(nn.Module):
    def __init__(self, with_r=False):
        super().__init__()
        self.with_r = with_r

    def forward(self, input_tensor):
        """
        Args:
            input_tensor: shape(batch, channel, x_dim, y_dim)
        """
        batch_size, _, x_dim, y_dim = input_tensor.size()

        xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
        yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)

        xx_channel = xx_channel / (x_dim - 1)
        yy_channel = yy_channel / (y_dim - 1)

        xx_channel = xx_channel * 2 - 1
        yy_channel = yy_channel * 2 - 1

        xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
        yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)

        if input_tensor.is_cuda:
            xx_channel = xx_channel.to(input_tensor.device)
            yy_channel = yy_channel.to(input_tensor.device)

        ret = torch.cat([input_tensor, xx_channel.type_as(input_tensor), yy_channel.type_as(input_tensor)], dim=1)

        if self.with_r:
            rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2))
            if input_tensor.is_cuda:
                rr = rr.to(input_tensor.device)
            ret = torch.cat([ret, rr], dim=1)

        return ret


class CoordConv(nn.Module):
    def __init__(self, in_channels, out_channels, with_r=False, **kwargs):
        super().__init__()
        self.addcoords = AddCoords(with_r=with_r)
        self.conv = nn.Conv2d(in_channels + 2, out_channels, **kwargs)

    def forward(self, x):
        ret = self.addcoords(x)
        ret = self.conv(ret)
        return ret