File size: 6,670 Bytes
da8a0d7
 
5ea5efd
da8a0d7
5ea5efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8a0d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea5efd
 
 
da8a0d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import tempfile
import gradio as gr
import openai
from neon_tts_plugin_coqui import CoquiTTS

def Question(Ask_Question):
  # pass the generated text to audio
  openai.api_key = "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"
  # Set up the model and prompt
  model_engine = "text-davinci-003"
  #prompt = "who is alon musk?"
  # Generate a response
  completion = openai.Completion.create(
  engine=model_engine,
  prompt=Ask_Question,
  max_tokens=1024,
  n=1,
  stop=None,
  temperature=0.5,)
  response = completion.choices[0].text
  #out_result=resp['message']
  return  response

LANGUAGES = list(CoquiTTS.langs.keys())
default_lang = "en"
import telnetlib
#import whisper
#whisper_model = whisper.load_model("small")
whisper = gr.Interface.load(name="spaces/sanchit-gandhi/whisper-large-v2")
#chatgpt = gr.Blocks.load(name="spaces/fffiloni/whisper-to-chatGPT")
import os
import json
session_token = os.environ.get('SessionToken')
#api_endpoint = os.environ.get('API_EndPoint')
# ChatGPT
#from revChatGPT.ChatGPT import Chatbot
#chatbot = Chatbot({"session_token": session_token}) # You can start a custom conversation
import asyncio
from pygpt import PyGPT

title = "Speech to ChatGPT to Speech"
#info = "more info at [Neon Coqui TTS Plugin](https://github.com/NeonGeckoCom/neon-tts-plugin-coqui), [Coqui TTS](https://github.com/coqui-ai/TTS)"
#badge = "https://visitor-badge-reloaded.herokuapp.com/badge?page_id=neongeckocom.neon-tts-plugin-coqui"
coquiTTS = CoquiTTS()
chat_id = {'conversation_id': None, 'parent_id': None}
headers = {'Authorization': 'yusin'}

async def chat_gpt_ask(prompt):
    chat_gpt = PyGPT(session_token)
    await chat_gpt.connect()
    await chat_gpt.wait_for_ready()
    answer = await chat_gpt.ask(prompt)
    print(answer)
    await chat_gpt.disconnect()

# ChatGPT
def chat_hf(audio, custom_token, language):
    #output = chatgpt(audio, "transcribe", fn_index=0)
    #whisper_text, gpt_response = output[0], output[1]
    try:
        whisper_text = translate(audio)
        if whisper_text == "ERROR: You have to either use the microphone or upload an audio file":
            gpt_response = "MISSING AUDIO: Record your voice by clicking the microphone button, do not forget to stop recording before sending your message ;)"
        else:
            #gpt_response = chatbot.ask(whisper_text, conversation_id=conversation_id, parent_id=None)
            gpt_response = asyncio.run(chat_gpt_ask(whisper_text, id='yusin'))
            #if chat_id['conversation_id'] != None:
            #    data = {"content": whisper_text, "conversation_id": chat_id['conversation_id'], "parent_id": chat_id['parent_id']}
            #else: 
            #    data = {"content": whisper_text}
            #print(data)
            #res = requests.get('http://myip.ipip.net', timeout=5).text
            #print(res)
            #response = requests.post('api_endpoint', headers=headers, json=data, verify=False, timeout=5)
            #print('this is my answear', response.text)
            #chat_id['parent_id'] = response.json()["response_id"]
            #chat_id['conversation_id'] = response.json()["conversation_id"]
            #gpt_response = response.json()["content"]
            #response = requests.get('https://api.pawan.krd/chat/gpt?text=' + whisper_text + '&cache=false', verify=False, timeout=5)
            #print(response.text)
        
        #whisper_text = translate(audio)
        #api = ChatGPT(session_token) 
        #resp = api.send_message(whisper_text)
        
        #api.refresh_auth()  # refresh the authorization token
        #api.reset_conversation()  # reset the conversation
        #gpt_response = resp['message']

    except:
        whisper_text = translate(audio)
        gpt_response = """Sorry, I'm quite busy right now, but please try again later :)"""
        #whisper_text = translate(audio)
        #api = ChatGPT(custom_token) 
        #resp = api.send_message(whisper_text)
        
        #api.refresh_auth()  # refresh the authorization token
        #api.reset_conversation()  # reset the conversation
        #gpt_response = resp['message']

    ## call openai
        gpt_response = Question(whisper_text)
    
    # to voice
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
        coquiTTS.get_tts(gpt_response, fp, speaker = {"language" : language})
    
    return whisper_text, gpt_response, fp.name

# whisper
#def translate(audio):
#    print("""
#    β€”
#    Sending audio to Whisper ...
#    β€”
#    """)
#    
#    audio = whisper.load_audio(audio)
#    audio = whisper.pad_or_trim(audio)
#    
#    mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
#    
#    _, probs = whisper_model.detect_language(mel)
#    
#    transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
#    
#    transcription = whisper.decode(whisper_model, mel, transcript_options)
#    
#    print("language spoken: " + transcription.language)
#    print("transcript: " + transcription.text)
#    print("β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”")  
#      
#    return transcription.text

def translate(audio):
    print("""
    β€”
    Sending audio to Whisper ...
    β€”
    """)
   
    text_result = whisper(audio, None, "transcribe", fn_index=0)
    #print(text_result)
    return text_result


with gr.Blocks() as blocks:
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>"
                + title
                + "</h1>")
    #gr.Markdown(description)
    radio = gr.Radio(label="Language",choices=LANGUAGES,value=default_lang)
    with gr.Row(equal_height=True):# equal_height=False
        with gr.Column():# variant="panel"
            audio_file = gr.Audio(source="microphone",type="filepath")
            custom_token = gr.Textbox(label='If it fails, use your own session token', placeholder="your own session token")
            with gr.Row():# mobile_collapse=False
                submit = gr.Button("Submit", variant="primary")
        with gr.Column():
            text1 = gr.Textbox(label="Speech to Text")
            text2 = gr.Textbox(label="ChatGPT Response")
            audio = gr.Audio(label="Output", interactive=False)
    #gr.Markdown(info)
    #gr.Markdown("<center>"
    #            +f'<img src={badge} alt="visitors badge"/>'
    #            +"</center>")

    # actions
    submit.click(
        chat_hf,
        [audio_file, custom_token, radio],
        [text1, text2, audio],
    )
    radio.change(lambda lang: CoquiTTS.langs[lang]["sentence"], radio, text2)


blocks.launch(debug=True)