File size: 5,307 Bytes
6e14b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a86d6a
 
 
 
6e14b02
4a86d6a
6e14b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a86d6a
 
 
 
6e14b02
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pathlib
import sys
import tarfile

sys.path.insert(0, 'yolov5_anime')

import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
from models.yolo import Model
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords

ORIGINAL_REPO_URL = 'https://github.com/zymk9/yolov5_anime'
TITLE = 'zymk9/yolov5_anime'
DESCRIPTION = f'A demo for {ORIGINAL_REPO_URL}'
ARTICLE = None

TOKEN = os.environ['TOKEN']
MODEL_REPO = 'hysts/yolov5_anime'
MODEL_FILENAME = 'yolov5x_anime.pth'
CONFIG_FILENAME = 'yolov5x.yaml'


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--score-slider-step', type=float, default=0.05)
    parser.add_argument('--score-threshold', type=float, default=0.4)
    parser.add_argument('--iou-slider-step', type=float, default=0.05)
    parser.add_argument('--iou-threshold', type=float, default=0.5)
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path('images')
    if not image_dir.exists():
        dataset_repo = 'hysts/sample-images-TADNE'
        path = huggingface_hub.hf_hub_download(dataset_repo,
                                               'images.tar.gz',
                                               repo_type='dataset',
                                               use_auth_token=TOKEN)
        with tarfile.open(path) as f:
            f.extractall()
    return sorted(image_dir.glob('*'))


def load_model(device: torch.device) -> torch.nn.Module:
    torch.set_grad_enabled(False)
    model_path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                                 MODEL_FILENAME,
                                                 use_auth_token=TOKEN)
    config_path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                                  CONFIG_FILENAME,
                                                  use_auth_token=TOKEN)
    state_dict = torch.load(model_path)
    model = Model(cfg=config_path)
    model.load_state_dict(state_dict)
    model.to(device)
    if device.type != 'cpu':
        model.half()
    model.eval()
    return model


@torch.inference_mode()
def predict(image: PIL.Image.Image, score_threshold: float,
            iou_threshold: float, device: torch.device,
            model: torch.nn.Module) -> np.ndarray:
    orig_image = np.asarray(image)

    image = letterbox(orig_image, new_shape=640)[0]
    data = torch.from_numpy(image.transpose(2, 0, 1)).float() / 255
    data = data.to(device).unsqueeze(0)
    if device.type != 'cpu':
        data = data.half()

    preds = model(data)[0]
    preds = non_max_suppression(preds, score_threshold, iou_threshold)

    detections = []
    for pred in preds:
        if pred is not None and len(pred) > 0:
            pred[:, :4] = scale_coords(data.shape[2:], pred[:, :4],
                                       orig_image.shape).round()
            # (x0, y0, x1, y0, conf, class)
            detections.append(pred.cpu().numpy())
    detections = np.concatenate(detections) if detections else np.empty(
        shape=(0, 6))

    res = orig_image.copy()
    for det in detections:
        x0, y0, x1, y1 = det[:4].astype(int)
        cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 3)
    return res


def main():
    args = parse_args()
    device = torch.device(args.device)

    image_paths = load_sample_image_paths()
    examples = [[path.as_posix(), args.score_threshold, args.iou_threshold]
                for path in image_paths]

    model = load_model(device)

    func = functools.partial(predict, device=device, model=model)
    func = functools.update_wrapper(func, predict)

    gr.Interface(
        func,
        [
            gr.inputs.Image(type='pil', label='Input'),
            gr.inputs.Slider(0,
                             1,
                             step=args.score_slider_step,
                             default=args.score_threshold,
                             label='Score Threshold'),
            gr.inputs.Slider(0,
                             1,
                             step=args.iou_slider_step,
                             default=args.iou_threshold,
                             label='IoU Threshold'),
        ],
        gr.outputs.Image(label='Output'),
        examples=examples,
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()