Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,307 Bytes
6e14b02 4a86d6a 6e14b02 4a86d6a 6e14b02 4a86d6a 6e14b02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pathlib
import sys
import tarfile
sys.path.insert(0, 'yolov5_anime')
import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
from models.yolo import Model
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords
ORIGINAL_REPO_URL = 'https://github.com/zymk9/yolov5_anime'
TITLE = 'zymk9/yolov5_anime'
DESCRIPTION = f'A demo for {ORIGINAL_REPO_URL}'
ARTICLE = None
TOKEN = os.environ['TOKEN']
MODEL_REPO = 'hysts/yolov5_anime'
MODEL_FILENAME = 'yolov5x_anime.pth'
CONFIG_FILENAME = 'yolov5x.yaml'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--score-slider-step', type=float, default=0.05)
parser.add_argument('--score-threshold', type=float, default=0.4)
parser.add_argument('--iou-slider-step', type=float, default=0.05)
parser.add_argument('--iou-threshold', type=float, default=0.5)
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
dataset_repo = 'hysts/sample-images-TADNE'
path = huggingface_hub.hf_hub_download(dataset_repo,
'images.tar.gz',
repo_type='dataset',
use_auth_token=TOKEN)
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob('*'))
def load_model(device: torch.device) -> torch.nn.Module:
torch.set_grad_enabled(False)
model_path = huggingface_hub.hf_hub_download(MODEL_REPO,
MODEL_FILENAME,
use_auth_token=TOKEN)
config_path = huggingface_hub.hf_hub_download(MODEL_REPO,
CONFIG_FILENAME,
use_auth_token=TOKEN)
state_dict = torch.load(model_path)
model = Model(cfg=config_path)
model.load_state_dict(state_dict)
model.to(device)
if device.type != 'cpu':
model.half()
model.eval()
return model
@torch.inference_mode()
def predict(image: PIL.Image.Image, score_threshold: float,
iou_threshold: float, device: torch.device,
model: torch.nn.Module) -> np.ndarray:
orig_image = np.asarray(image)
image = letterbox(orig_image, new_shape=640)[0]
data = torch.from_numpy(image.transpose(2, 0, 1)).float() / 255
data = data.to(device).unsqueeze(0)
if device.type != 'cpu':
data = data.half()
preds = model(data)[0]
preds = non_max_suppression(preds, score_threshold, iou_threshold)
detections = []
for pred in preds:
if pred is not None and len(pred) > 0:
pred[:, :4] = scale_coords(data.shape[2:], pred[:, :4],
orig_image.shape).round()
# (x0, y0, x1, y0, conf, class)
detections.append(pred.cpu().numpy())
detections = np.concatenate(detections) if detections else np.empty(
shape=(0, 6))
res = orig_image.copy()
for det in detections:
x0, y0, x1, y1 = det[:4].astype(int)
cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 3)
return res
def main():
args = parse_args()
device = torch.device(args.device)
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), args.score_threshold, args.iou_threshold]
for path in image_paths]
model = load_model(device)
func = functools.partial(predict, device=device, model=model)
func = functools.update_wrapper(func, predict)
gr.Interface(
func,
[
gr.inputs.Image(type='pil', label='Input'),
gr.inputs.Slider(0,
1,
step=args.score_slider_step,
default=args.score_threshold,
label='Score Threshold'),
gr.inputs.Slider(0,
1,
step=args.iou_slider_step,
default=args.iou_threshold,
label='IoU Threshold'),
],
gr.outputs.Image(label='Output'),
examples=examples,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|