Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,610 Bytes
6e14b02 cf50ec4 bd6d449 cf50ec4 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 bd6d449 6e14b02 7852ca7 bd6d449 7852ca7 aa47213 bd6d449 aa47213 bd6d449 aa47213 bd6d449 aa47213 bd6d449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import pathlib
import sys
import tarfile
import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
sys.path.insert(0, "yolov5_anime")
from models.yolo import Model
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords
DESCRIPTION = "# [zymk9/yolov5_anime](https://github.com/zymk9/yolov5_anime)"
MODEL_REPO = "public-data/yolov5_anime"
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path("images")
if not image_dir.exists():
dataset_repo = "hysts/sample-images-TADNE"
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob("*"))
def load_model(device: torch.device) -> torch.nn.Module:
torch.set_grad_enabled(False)
model_path = huggingface_hub.hf_hub_download(MODEL_REPO, "yolov5x_anime.pth")
config_path = huggingface_hub.hf_hub_download(MODEL_REPO, "yolov5x.yaml")
state_dict = torch.load(model_path)
model = Model(cfg=config_path)
model.load_state_dict(state_dict)
model.to(device)
if device.type != "cpu":
model.half()
model.eval()
return model
@torch.inference_mode()
def predict(
image: PIL.Image.Image, score_threshold: float, iou_threshold: float, device: torch.device, model: torch.nn.Module
) -> np.ndarray:
orig_image = np.asarray(image)
image = letterbox(orig_image, new_shape=640)[0]
data = torch.from_numpy(image.transpose(2, 0, 1)).float() / 255
data = data.to(device).unsqueeze(0)
if device.type != "cpu":
data = data.half()
preds = model(data)[0]
preds = non_max_suppression(preds, score_threshold, iou_threshold)
detections = []
for pred in preds:
if pred is not None and len(pred) > 0:
pred[:, :4] = scale_coords(data.shape[2:], pred[:, :4], orig_image.shape).round()
# (x0, y0, x1, y0, conf, class)
detections.append(pred.cpu().numpy())
detections = np.concatenate(detections) if detections else np.empty(shape=(0, 6))
res = orig_image.copy()
for det in detections:
x0, y0, x1, y1 = det[:4].astype(int)
cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 3)
return res
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.4, 0.5] for path in image_paths]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
fn = functools.partial(predict, device=device, model=model)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="pil")
score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.4)
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0, maximum=1, step=0.05, value=0.5)
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Output")
inputs = [image, score_threshold, iou_threshold]
gr.Examples(
examples=examples,
inputs=inputs,
outputs=result,
fn=fn,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=fn,
inputs=inputs,
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=15).launch()
|