File size: 3,610 Bytes
6e14b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf50ec4
bd6d449
cf50ec4
6e14b02
 
 
 
bd6d449
6e14b02
bd6d449
6e14b02
 
 
bd6d449
6e14b02
bd6d449
 
6e14b02
 
bd6d449
6e14b02
 
 
 
bd6d449
 
6e14b02
 
 
 
bd6d449
6e14b02
 
 
 
 
 
bd6d449
 
 
6e14b02
 
 
 
 
bd6d449
6e14b02
 
 
 
 
 
 
 
bd6d449
6e14b02
 
bd6d449
6e14b02
 
 
 
 
 
 
 
7852ca7
 
 
bd6d449
7852ca7
aa47213
 
bd6d449
aa47213
 
 
bd6d449
 
 
 
aa47213
bd6d449
aa47213
 
bd6d449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python

from __future__ import annotations

import functools
import os
import pathlib
import sys
import tarfile

import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch

sys.path.insert(0, "yolov5_anime")

from models.yolo import Model
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords

DESCRIPTION = "# [zymk9/yolov5_anime](https://github.com/zymk9/yolov5_anime)"

MODEL_REPO = "public-data/yolov5_anime"


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path("images")
    if not image_dir.exists():
        dataset_repo = "hysts/sample-images-TADNE"
        path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
        with tarfile.open(path) as f:
            f.extractall()
    return sorted(image_dir.glob("*"))


def load_model(device: torch.device) -> torch.nn.Module:
    torch.set_grad_enabled(False)
    model_path = huggingface_hub.hf_hub_download(MODEL_REPO, "yolov5x_anime.pth")
    config_path = huggingface_hub.hf_hub_download(MODEL_REPO, "yolov5x.yaml")
    state_dict = torch.load(model_path)
    model = Model(cfg=config_path)
    model.load_state_dict(state_dict)
    model.to(device)
    if device.type != "cpu":
        model.half()
    model.eval()
    return model


@torch.inference_mode()
def predict(
    image: PIL.Image.Image, score_threshold: float, iou_threshold: float, device: torch.device, model: torch.nn.Module
) -> np.ndarray:
    orig_image = np.asarray(image)

    image = letterbox(orig_image, new_shape=640)[0]
    data = torch.from_numpy(image.transpose(2, 0, 1)).float() / 255
    data = data.to(device).unsqueeze(0)
    if device.type != "cpu":
        data = data.half()

    preds = model(data)[0]
    preds = non_max_suppression(preds, score_threshold, iou_threshold)

    detections = []
    for pred in preds:
        if pred is not None and len(pred) > 0:
            pred[:, :4] = scale_coords(data.shape[2:], pred[:, :4], orig_image.shape).round()
            # (x0, y0, x1, y0, conf, class)
            detections.append(pred.cpu().numpy())
    detections = np.concatenate(detections) if detections else np.empty(shape=(0, 6))

    res = orig_image.copy()
    for det in detections:
        x0, y0, x1, y1 = det[:4].astype(int)
        cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 3)
    return res


image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.4, 0.5] for path in image_paths]

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
fn = functools.partial(predict, device=device, model=model)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Input", type="pil")
            score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.4)
            iou_threshold = gr.Slider(label="IoU Threshold", minimum=0, maximum=1, step=0.05, value=0.5)
            run_button = gr.Button("Run")
        with gr.Column():
            result = gr.Image(label="Output")

    inputs = [image, score_threshold, iou_threshold]
    gr.Examples(
        examples=examples,
        inputs=inputs,
        outputs=result,
        fn=fn,
        cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
    )
    run_button.click(
        fn=fn,
        inputs=inputs,
        outputs=result,
        api_name="predict",
    )

if __name__ == "__main__":
    demo.queue(max_size=15).launch()