File size: 5,389 Bytes
ec93f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pathlib
import subprocess
import tarfile

try:
    import detectron2
except:
    command = 'pip install git+https://github.com/facebookresearch/detectron2@v0.6'
    subprocess.call(command.split())

try:
    import adet
except:
    command = 'pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87'
    subprocess.call(command.split())

import gradio as gr
import huggingface_hub
import numpy as np
import torch
from adet.config import get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.visualizer import Visualizer

TOKEN = os.environ['TOKEN']

MODEL_REPO = 'hysts/Yet-Another-Anime-Segmenter'
MODEL_FILENAME = 'SOLOv2.pth'
CONFIG_FILENAME = 'SOLOv2.yaml'


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--class-score-slider-step', type=float, default=0.05)
    parser.add_argument('--class-score-threshold', type=float, default=0.1)
    parser.add_argument('--mask-score-slider-step', type=float, default=0.05)
    parser.add_argument('--mask-score-threshold', type=float, default=0.5)
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path('images')
    if not image_dir.exists():
        dataset_repo = 'hysts/sample-images-TADNE'
        path = huggingface_hub.hf_hub_download(dataset_repo,
                                               'images.tar.gz',
                                               repo_type='dataset',
                                               use_auth_token=TOKEN)
        with tarfile.open(path) as f:
            f.extractall()
    return sorted(image_dir.glob('*'))


def load_model(device: torch.device) -> DefaultPredictor:
    config_path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                                  CONFIG_FILENAME,
                                                  use_auth_token=TOKEN)
    model_path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                                 MODEL_FILENAME,
                                                 use_auth_token=TOKEN)
    cfg = get_cfg()
    cfg.merge_from_file(config_path)
    cfg.MODEL.WEIGHTS = model_path
    cfg.MODEL.DEVICE = device.type
    cfg.freeze()
    return DefaultPredictor(cfg)


def predict(image, class_score_threshold: float, mask_score_threshold: float,
            model: DefaultPredictor) -> tuple[np.ndarray, np.ndarray]:
    model.score_threshold = class_score_threshold
    model.mask_threshold = mask_score_threshold
    image = read_image(image.name, format='BGR')
    preds = model(image)
    instances = preds['instances'].to('cpu')

    visualizer = Visualizer(image[:, :, ::-1])
    vis = visualizer.draw_instance_predictions(predictions=instances)
    vis = vis.get_image()

    masked = image.copy()[:, :, ::-1]
    mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0)
    masked[mask == 0] = 255

    return vis, masked


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    image_paths = load_sample_image_paths()
    examples = [[
        path.as_posix(), args.class_score_threshold, args.mask_score_threshold
    ] for path in image_paths]

    model = load_model(device)

    func = functools.partial(predict, model=model)
    func = functools.update_wrapper(func, predict)

    repo_url = 'https://github.com/zymk9/Yet-Another-Anime-Segmenter'
    title = 'zymk9/Yet-Another-Anime-Segmenter'
    description = f'A demo for {repo_url}'
    article = None

    gr.Interface(
        func,
        [
            gr.inputs.Image(type='file', label='Input'),
            gr.inputs.Slider(0,
                             1,
                             step=args.class_score_slider_step,
                             default=args.class_score_threshold,
                             label='Class Score Threshold'),
            gr.inputs.Slider(0,
                             1,
                             step=args.mask_score_slider_step,
                             default=args.mask_score_threshold,
                             label='Mask Score Threshold'),
        ],
        [
            gr.outputs.Image(label='Instances'),
            gr.outputs.Image(label='Masked'),
        ],
        theme=args.theme,
        title=title,
        description=description,
        article=article,
        examples=examples,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()