File size: 2,648 Bytes
feb3220
 
6a6f2a6
feb3220
 
 
 
d0fbcd0
 
feb3220
 
7192eed
feb3220
 
 
 
3f8fe83
6a6f2a6
 
3f8fe83
 
 
 
feb3220
d0fbcd0
feb3220
6a6f2a6
feb3220
d0fbcd0
 
 
 
feb3220
c4bc238
3f8fe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feb3220
3f8fe83
2d40e1e
feb3220
 
3f8fe83
 
feb3220
3f8fe83
 
 
 
 
 
feb3220
 
 
 
 
3f8fe83
c4bc238
feb3220
d0fbcd0
e3aa0e4
 
 
 
 
 
feb3220
3f8fe83
c4bc238
 
feb3220
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python

import pathlib
import shlex
import subprocess

import gradio as gr
import PIL.Image
import spaces

from model import Model
from settings import MAX_SEED
from utils import randomize_seed_fn


def create_demo(model: Model) -> gr.Blocks:
    if not pathlib.Path("corgi.png").exists():
        subprocess.run(
            shlex.split(
                "wget https://raw.githubusercontent.com/openai/shap-e/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/examples/example_data/corgi.png -O corgi.png"
            )
        )
    examples = ["corgi.png"]

    @spaces.GPU
    def process_example_fn(image_path: str) -> str:
        return model.run_image(image_path)

    @spaces.GPU
    def run(image: PIL.Image.Image, seed: int, guidance_scale: float, num_inference_steps: int) -> str:
        return model.run_image(image, seed, guidance_scale, num_inference_steps)

    with gr.Blocks() as demo:
        with gr.Group():
            image = gr.Image(label="Input image", show_label=False, type="pil")
            run_button = gr.Button("Run")
            result = gr.Model3D(label="Result", show_label=False)
            with gr.Accordion("Advanced options", open=False):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1,
                    maximum=20,
                    step=0.1,
                    value=3.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=2,
                    maximum=100,
                    step=1,
                    value=64,
                )

        gr.Examples(
            examples=examples,
            inputs=image,
            outputs=result,
            fn=process_example_fn,
        )

        run_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            api_name=False,
            concurrency_limit=None,
        ).then(
            fn=run,
            inputs=[
                image,
                seed,
                guidance_scale,
                num_inference_steps,
            ],
            outputs=result,
            api_name="image-to-3d",
            concurrency_id="gpu",
            concurrency_limit=1,
        )
    return demo