Spaces:
Running
Running
File size: 2,586 Bytes
518857d 8575998 518857d 8575998 518857d 8575998 518857d 8575998 518857d 8575998 518857d 8575998 518857d 8575998 83321d4 2db804d 8575998 2db804d 8575998 2db804d 8575998 2db804d 8575998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
#!/usr/bin/env python
from __future__ import annotations
import functools
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from model import Model
DESCRIPTION = "# [MobileStyleGAN](https://github.com/bes-dev/MobileStyleGAN.pytorch)"
SAMPLE_IMAGE_DIR = "https://huggingface.co/spaces/hysts/MobileStyleGAN/resolve/main/samples"
ARTICLE = f"""## Generated images
### FFHQ
- size: 1024x1024
- seed: 0-99
- truncation: 1.0
![FFHQ]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
"""
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(
seed: int, truncation_psi: float, generator: str, model: nn.Module, device: torch.device
) -> np.ndarray:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.mapping_net.style_dim, seed, device)
out = model(z, truncation_psi=truncation_psi, generator=generator)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(device: torch.device) -> nn.Module:
path = hf_hub_download("public-data/MobileStyleGAN", "models/mobilestylegan_ffhq_v2.pth")
ckpt = torch.load(path)
model = Model()
model.load_state_dict(ckpt["state_dict"], strict=False)
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.mapping_net.style_dim)).to(device)
model(z)
return model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
fn = functools.partial(generate_image, model=model, device=device)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Group():
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=0, randomize=True)
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=1.0)
generator = gr.Radio(label="Generator", choices=["student", "teacher"], type="value", value="student")
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Output", type="numpy")
with gr.Row():
gr.Markdown(ARTICLE)
run_button.click(
fn=fn,
inputs=[seed, psi, generator],
outputs=result,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()
|