File size: 4,956 Bytes
d1e3d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023e539
d1e3d6b
 
023e539
d1e3d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python

import ast
import os

import datasets
import gradio as gr
import PIL.Image

DESCRIPTION = """\
# [MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset viewer
"""

SHOW_ANSWER = os.getenv("SHOW_ANSWER", "false").lower() == "true"
SHOW_QUESTION_DETAILS = os.getenv("SHOW_QUESTION_DETAILS", "false").lower() == "true"

SUBJECTS = [
    "Accounting",
    "Agriculture",
    "Architecture_and_Engineering",
    "Art",
    "Art_Theory",
    "Basic_Medical_Science",
    "Biology",
    "Chemistry",
    "Clinical_Medicine",
    "Computer_Science",
    "Design",
    "Diagnostics_and_Laboratory_Medicine",
    "Economics",
    "Electronics",
    "Energy_and_Power",
    "Finance",
    "Geography",
    "History",
    "Literature",
    "Manage",
    "Marketing",
    "Materials",
    "Math",
    "Mechanical_Engineering",
    "Music",
    "Pharmacy",
    "Physics",
    "Psychology",
    "Public_Health",
    "Sociology",
]
ds = {subject: datasets.load_dataset("MMMU/MMMU", name=subject, split="validation") for subject in SUBJECTS}


def set_default_subject() -> str:
    return "Accounting"


def get_images(subject: str, question_index: int) -> list[PIL.Image.Image]:
    images = []
    for image_id in range(1, 8):
        image = ds[subject][question_index][f"image_{image_id}"]
        if image is None:
            break
        images.append(image)
    return images


def update_subject(
    subject: str,
) -> tuple[
    gr.Textbox,  # Number of Questions
    gr.Slider,  # Question Index
    gr.Gallery,  # Images
    gr.Textbox,  # Question
    gr.Textbox,  # Options
    gr.Textbox,  # Answer
    gr.Textbox,  # Explanation
    gr.Textbox,  # Topic Difficulty
    gr.Textbox,  # Question Type
    gr.Textbox,  # Subfield
]:
    return (
        gr.Textbox(value=len(ds[subject])),  # Number of Questions
        gr.Slider(label="Question Index", minimum=0, maximum=len(ds[subject]) - 1, step=1, value=0),  # Question Index
    ) + update_question(subject, 0)


def update_question(subject: str, question_index: int) -> tuple[
    gr.Gallery,  # Images
    gr.Textbox,  # Question
    gr.Textbox,  # Options
    gr.Textbox,  # Answer
    gr.Textbox,  # Explanation
    gr.Textbox,  # Topic Difficulty
    gr.Textbox,  # Question Type
    gr.Textbox,  # Subfield
]:
    question = ds[subject][question_index]

    options = ast.literal_eval(question["options"])
    options_str = "\n".join([f"{chr(65 + i)}. {option}" for i, option in enumerate(options)])
    images = get_images(subject, question_index)
    return (
        gr.Gallery(value=images, columns=min(len(images), 2)),  # Images
        gr.Textbox(value=question["question"]),  # Question
        gr.Textbox(value=options_str),  # Options
        gr.Textbox(value=question["answer"]),  # Answer
        gr.Textbox(value=question["explanation"]),  # Explanation
        gr.Textbox(value=question["topic_difficulty"]),  # Topic Difficulty
        gr.Textbox(value=question["question_type"]),  # Question Type
        gr.Textbox(value=question["subfield"]),  # Subfield
    )


with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        subject = gr.Dropdown(label="Subject", choices=SUBJECTS, value=SUBJECTS[-1])
        question_count = gr.Textbox(label="Number of Questions")

    with gr.Group():
        question_index = gr.Slider(label="Question Index")
        with gr.Row():
            with gr.Column():
                question = gr.Textbox(label="Question")
                options = gr.Textbox(label="Options")
            with gr.Column():
                images = gr.Gallery(label="Images", object_fit="scale-down")

    with gr.Accordion("Answer and Explanation", open=SHOW_ANSWER):
        with gr.Row():
            answer = gr.Textbox(label="Answer")
            explanation = gr.Textbox(label="Explanation")

    with gr.Accordion("Question Details", open=SHOW_QUESTION_DETAILS):
        with gr.Row():
            topic_difficulty = gr.Textbox(label="Topic Difficulty")
            question_type = gr.Textbox(label="Question Type")
            subfield = gr.Textbox(label="Subfield")

    subject.change(
        fn=update_subject,
        inputs=subject,
        outputs=[
            question_count,
            question_index,
            images,
            question,
            options,
            answer,
            explanation,
            topic_difficulty,
            question_type,
            subfield,
        ],
        queue=False,
        api_name=False,
    )

    question_index.input(
        fn=update_question,
        inputs=[subject, question_index],
        outputs=[images, question, options, answer, explanation, topic_difficulty, question_type, subfield],
        queue=False,
        api_name=False,
    )

    demo.load(fn=set_default_subject, outputs=subject, queue=False, api_name=False)

if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False)