File size: 4,834 Bytes
c4cd192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef451ee
 
c4cd192
 
 
 
ef451ee
c4cd192
 
 
ef451ee
 
c4cd192
 
 
 
 
 
 
 
ef451ee
 
 
 
 
 
 
 
c4cd192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef451ee
c4cd192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef451ee
c4cd192
 
 
ef451ee
c4cd192
 
 
 
 
 
 
 
 
ef451ee
 
 
 
 
 
 
 
c4cd192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef451ee
 
8cf6e41
 
ef451ee
 
 
8cf6e41
 
 
 
ef451ee
fafee53
ef451ee
fafee53
ef451ee
fafee53
 
 
ef451ee
 
 
fafee53
ef451ee
 
 
 
 
 
 
 
 
fafee53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python

from __future__ import annotations

import functools
import os
import sys
from typing import Callable

import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as T
from scipy.spatial.transform import Rotation

sys.path.insert(0, "face_detection")
sys.path.insert(0, "deep-head-pose/code")

from hopenet import Hopenet
from ibug.face_detection import RetinaFacePredictor

DESCRIPTION = "# [Hopenet](https://github.com/natanielruiz/deep-head-pose)"


def load_model(model_name: str, device: torch.device) -> nn.Module:
    path = huggingface_hub.hf_hub_download("public-data/Hopenet", f"models/{model_name}.pkl")
    state_dict = torch.load(path, map_location="cpu")
    model = Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
    model.load_state_dict(state_dict)
    model.to(device)
    model.eval()
    return model


def create_transform() -> Callable:
    transform = T.Compose(
        [
            T.Resize(224),
            T.CenterCrop(224),
            T.ToTensor(),
            T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ]
    )
    return transform


def crop_face(image: np.ndarray, box: tuple[int, int, int, int]) -> np.ndarray:
    x0, y0, x1, y1 = box
    w = x1 - x0
    h = y1 - y0
    x0 -= 2 * w // 4
    x1 += 2 * w // 4
    y0 -= 3 * h // 4
    y1 += h // 4
    x0 = max(x0, 0)
    y0 = max(y0, 0)
    x1 = min(x1, image.shape[1])
    y1 = min(y1, image.shape[0])
    image = image[y0:y1, x0:x1]
    return image


@torch.inference_mode()
def predict(image: np.ndarray, transform: Callable, model: nn.Module, device: torch.device) -> np.ndarray:
    indices = torch.arange(66).float().to(device)

    image = PIL.Image.fromarray(image)
    data = transform(image)
    data = data.to(device)

    # the output of the model is a tuple of 3 tensors (yaw, pitch, roll)
    # the shape of each tensor is (1, 66)
    out = model(data[None, ...])
    out = torch.stack(out, dim=1)  # shape: (1, 3, 66)
    out = F.softmax(out, dim=2)
    out = (out * indices).sum(dim=2) * 3 - 99
    out = out.cpu().numpy()[0]
    return out


def draw_axis(image: np.ndarray, pose: np.ndarray, origin: np.ndarray, length: int) -> None:
    # (yaw, pitch, roll) -> (roll, yaw, pitch)
    pose = pose[[2, 0, 1]]
    pose *= np.array([1, -1, 1])
    rot = Rotation.from_euler("zyx", pose, degrees=True)

    vectors = rot.as_matrix().T[:, :2]  # shape: (3, 2)
    pts = np.round(vectors * length + origin).astype(int)

    cv2.line(image, tuple(origin), tuple(pts[0]), (0, 0, 255), 3)
    cv2.line(image, tuple(origin), tuple(pts[1]), (0, 255, 0), 3)
    cv2.line(image, tuple(origin), tuple(pts[2]), (255, 0, 0), 2)


def run(
    image: np.ndarray,
    model_name: str,
    face_detector: RetinaFacePredictor,
    models: dict[str, nn.Module],
    transform: Callable,
    device: torch.device,
) -> np.ndarray:
    model = models[model_name]

    # RGB -> BGR
    det_faces = face_detector(image[:, :, ::-1], rgb=False)

    res = image[:, :, ::-1].copy()
    for det_face in det_faces:
        box = np.round(det_face[:4]).astype(int)

        # RGB
        face_image = crop_face(image, box.tolist())

        # (yaw, pitch, roll)
        angles = predict(face_image, transform, model, device)

        center = (box[:2] + box[2:]) // 2
        length = (box[3] - box[1]) // 2
        draw_axis(res, angles, center, length)

    return res[:, :, ::-1]


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
face_detector = RetinaFacePredictor(threshold=0.8, device=device, model=RetinaFacePredictor.get_model("mobilenet0.25"))

model_names = [
    "hopenet_alpha1",
    "hopenet_alpha2",
    "hopenet_robust_alpha1",
]
models = {name: load_model(name, device) for name in model_names}
transform = create_transform()

fn = functools.partial(run, face_detector=face_detector, models=models, transform=transform, device=device)

examples = [["images/pexels-ksenia-chernaya-8535230.jpg", "hopenet_alpha1"]]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Input", type="numpy")
            model_name = gr.Radio(label="Model", choices=model_names, type="value", value=model_names[0])
            run_button = gr.Button("Run")
        with gr.Column():
            result = gr.Image(label="Output")
    gr.Examples(
        examples=examples,
        inputs=[image, model_name],
        outputs=result,
        fn=fn,
        cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
    )
    run_button.click(fn=fn, inputs=[image, model_name], outputs=result, api_name="run")
demo.queue().launch()