File size: 1,608 Bytes
b8d9f69 fde7b21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
#!/usr/bin/env python
from __future__ import annotations
import os
import pathlib
import shlex
import subprocess
import gradio as gr
from app_colorization import create_demo as create_demo_colorization
from app_superresolution import create_demo as create_demo_superresolution
DESCRIPTION = '''# DDNM-HQ
This is an unofficial demo for [https://github.com/wyhuai/DDNM/tree/main/hq_demo](https://github.com/wyhuai/DDNM/tree/main/hq_demo).
'''
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
DESCRIPTION += f'''<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<br/>
<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>
'''
MODEL_DIR = pathlib.Path('DDNM/hq_demo/data/pretrained')
if not MODEL_DIR.exists():
MODEL_DIR.mkdir()
subprocess.run(shlex.split(
'wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt'
),
cwd=MODEL_DIR.as_posix())
subprocess.run(shlex.split(
'wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt'
),
cwd=MODEL_DIR.as_posix())
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem(label='Super-resolution'):
create_demo_superresolution()
with gr.TabItem(label='Colorization'):
create_demo_colorization()
demo.queue(max_size=5, api_open=False).launch()
|