Spaces:
Running
Running
File size: 3,519 Bytes
a7a3cc5 02c2b6d a7a3cc5 02c2b6d a7a3cc5 ca01e24 a7a3cc5 0ec55dd a7a3cc5 ca01e24 a7a3cc5 ca01e24 a7a3cc5 ca01e24 a7a3cc5 ca01e24 a7a3cc5 b2c2519 a7a3cc5 b2c2519 a7a3cc5 ca01e24 a7a3cc5 ca01e24 a7a3cc5 ca01e24 a7a3cc5 ca01e24 a7a3cc5 8e14a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
#!/usr/bin/env python
from __future__ import annotations
import os
import pathlib
import shlex
import subprocess
import gradio as gr
if os.getenv('SYSTEM') == 'spaces':
with open('patch') as f:
subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet')
base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/'
names = [
'body_pose_model.pth',
'dpt_hybrid-midas-501f0c75.pt',
'hand_pose_model.pth',
'mlsd_large_512_fp32.pth',
'mlsd_tiny_512_fp32.pth',
'network-bsds500.pth',
'upernet_global_small.pth',
]
for name in names:
command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}'
out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}')
if out_path.exists():
continue
subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')
from gradio_canny2image import create_demo as create_demo_canny
from gradio_depth2image import create_demo as create_demo_depth
from gradio_fake_scribble2image import create_demo as create_demo_fake_scribble
from gradio_hed2image import create_demo as create_demo_hed
from gradio_hough2image import create_demo as create_demo_hough
from gradio_normal2image import create_demo as create_demo_normal
from gradio_pose2image import create_demo as create_demo_pose
from gradio_scribble2image import create_demo as create_demo_scribble
from gradio_scribble2image_interactive import \
create_demo as create_demo_scribble_interactive
from gradio_seg2image import create_demo as create_demo_seg
from model import Model
MAX_IMAGES = 1
DESCRIPTION = '''# ControlNet
This is an unofficial demo for [https://github.com/lllyasviel/ControlNet](https://github.com/lllyasviel/ControlNet).
'''
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
DESCRIPTION += f'''<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<br/>
<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>
'''
model = Model()
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem('Canny'):
create_demo_canny(model.process_canny, max_images=MAX_IMAGES)
with gr.TabItem('Hough'):
create_demo_hough(model.process_hough, max_images=MAX_IMAGES)
with gr.TabItem('HED'):
create_demo_hed(model.process_hed, max_images=MAX_IMAGES)
with gr.TabItem('Scribble'):
create_demo_scribble(model.process_scribble, max_images=MAX_IMAGES)
with gr.TabItem('Scribble Interactive'):
create_demo_scribble_interactive(
model.process_scribble_interactive, max_images=MAX_IMAGES)
with gr.TabItem('Fake Scribble'):
create_demo_fake_scribble(model.process_fake_scribble,
max_images=MAX_IMAGES)
with gr.TabItem('Pose'):
create_demo_pose(model.process_pose, max_images=MAX_IMAGES)
with gr.TabItem('Segmentation'):
create_demo_seg(model.process_seg, max_images=MAX_IMAGES)
with gr.TabItem('Depth'):
create_demo_depth(model.process_depth, max_images=MAX_IMAGES)
with gr.TabItem('Normal map'):
create_demo_normal(model.process_normal, max_images=MAX_IMAGES)
demo.queue(api_open=False).launch()
|