File size: 5,354 Bytes
e51b1cb
98b7ef3
7252e54
e51b1cb
1bb0264
7252e54
e51b1cb
 
1bb0264
7252e54
 
e51b1cb
1bb0264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e97aac1
1bb0264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b7ef3
1bb0264
e97aac1
1bb0264
 
 
 
 
 
 
 
 
 
 
e51b1cb
1bb0264
e51b1cb
1bb0264
b09ce4a
7252e54
e51b1cb
7252e54
1bb0264
 
e51b1cb
 
e97aac1
e51b1cb
 
1bb0264
e51b1cb
 
 
b09ce4a
1bb0264
 
b09ce4a
 
e97aac1
b09ce4a
 
 
e51b1cb
e97aac1
 
e51b1cb
b09ce4a
e51b1cb
 
 
1bb0264
e51b1cb
 
 
 
 
 
 
e97aac1
e51b1cb
 
 
 
a3b3cd8
e51b1cb
a3b3cd8
 
 
 
e97aac1
a3b3cd8
 
e97aac1
a3b3cd8
e51b1cb
a3b3cd8
e51b1cb
 
b09ce4a
 
 
 
 
e97aac1
 
b09ce4a
e97aac1
 
 
 
b09ce4a
e97aac1
b09ce4a
e97aac1
b09ce4a
e97aac1
b09ce4a
e97aac1
b09ce4a
e97aac1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import json
import tempfile
import uuid
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

import pyarrow as pa
import pyarrow.parquet as pq
from huggingface_hub import CommitScheduler, HfApi


class ParquetScheduler(CommitScheduler):
    """
    Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append`
    call will result in 1 row in your final dataset.

    ```py
    # Start scheduler
    >>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset")

    # Append some data to be uploaded
    >>> scheduler.append({...})
    >>> scheduler.append({...})
    >>> scheduler.append({...})
    ```

    The scheduler will automatically infer the schema from the data it pushes.
    Optionally, you can manually set the schema yourself:

    ```py
    >>> scheduler = ParquetScheduler(
    ...     repo_id="my-parquet-dataset",
    ...     schema={
    ...         "prompt": {"_type": "Value", "dtype": "string"},
    ...         "negative_prompt": {"_type": "Value", "dtype": "string"},
    ...         "guidance_scale": {"_type": "Value", "dtype": "int64"},
    ...         "image": {"_type": "Image"},
    ...     },
    ... )

    See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
    possible values.
    """

    def __init__(
        self,
        *,
        repo_id: str,
        schema: Optional[Dict[str, Dict[str, str]]] = None,
        every: Union[int, float] = 5,
        revision: Optional[str] = None,
        private: bool = False,
        token: Optional[str] = None,
        allow_patterns: Union[List[str], str, None] = None,
        ignore_patterns: Union[List[str], str, None] = None,
        hf_api: Optional[HfApi] = None,
    ) -> None:
        super().__init__(
            repo_id=repo_id,
            folder_path=tempfile.tempdir,  # not used by the scheduler
            every=every,
            repo_type="dataset",
            revision=revision,
            private=private,
            token=token,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            hf_api=hf_api,
        )

        self._rows: List[Dict[str, Any]] = []
        self._schema = schema

    def append(self, row: Dict[str, Any]) -> None:
        """Add a new item to be uploaded."""
        with self.lock:
            self._rows.append(row)

    def push_to_hub(self):
        # Check for new rows to push
        with self.lock:
            rows = self._rows
            self._rows = []
        if not rows:
            return
        print(f"Got {len(rows)} item(s) to commit.")

        # Load images + create 'features' config for datasets library
        schema: Dict[str, Dict] = self._schema or {}
        path_to_cleanup: List[Path] = []
        for row in rows:
            for key, value in row.items():
                # Infer schema (for `datasets` library)
                if key not in schema:
                    schema[key] = _infer_schema(key, value)

                # Load binary files if necessary
                if schema[key]["_type"] in ("Image", "Audio"):
                    # It's an image or audio: we load the bytes and remember to cleanup the file
                    file_path = Path(value)
                    if file_path.is_file():
                        row[key] = {
                            "path": file_path.name,
                            "bytes": file_path.read_bytes(),
                        }
                        path_to_cleanup.append(file_path)

        # Complete rows if needed
        for row in rows:
            for feature in schema:
                if feature not in row:
                    row[feature] = None

        # Export items to Arrow format
        table = pa.Table.from_pylist(rows)

        # Add metadata (used by datasets library)
        table = table.replace_schema_metadata({"huggingface": json.dumps({"info": {"features": schema}})})

        # Write to parquet file
        archive_file = tempfile.NamedTemporaryFile()
        pq.write_table(table, archive_file.name)

        # Upload
        self.api.upload_file(
            repo_id=self.repo_id,
            repo_type=self.repo_type,
            revision=self.revision,
            path_in_repo=f"{uuid.uuid4()}.parquet",
            path_or_fileobj=archive_file.name,
        )
        print("Commit completed.")

        # Cleanup
        archive_file.close()
        for path in path_to_cleanup:
            path.unlink(missing_ok=True)


def _infer_schema(key: str, value: Any) -> Dict[str, str]:
    """Infer schema for the `datasets` library.

    See
    https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value.
    """
    if "image" in key:
        return {"_type": "Image"}
    if "audio" in key:
        return {"_type": "Audio"}
    if isinstance(value, int):
        return {"_type": "Value", "dtype": "int64"}
    if isinstance(value, float):
        return {"_type": "Value", "dtype": "float64"}
    if isinstance(value, bool):
        return {"_type": "Value", "dtype": "bool"}
    if isinstance(value, bytes):
        return {"_type": "Value", "dtype": "binary"}
    # Otherwise in last resort => convert it to a string
    return {"_type": "Value", "dtype": "string"}