File size: 12,113 Bytes
52742d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import streamlit as st
import shelve
import docx2txt
import PyPDF2
import time # Used to simulate typing effect
import nltk
import re
import os
import requests
from dotenv import load_dotenv
import torch
from sentence_transformers import SentenceTransformer, util
import nltk
nltk.download('punkt')
import hashlib
from nltk import sent_tokenize
nltk.download('punkt')
nltk.download('punkt_tab')
from transformers import LEDTokenizer, LEDForConditionalGeneration
import torch
st.set_page_config(page_title="Legal Document Summarizer", layout="wide")
st.title("π Legal Document Summarizer (Upload)")
USER_AVATAR = "π€"
BOT_AVATAR = "π€"
# Load chat history
def load_chat_history():
with shelve.open("chat_history") as db:
return db.get("messages", [])
# Save chat history
def save_chat_history(messages):
with shelve.open("chat_history") as db:
db["messages"] = messages
# Function to limit text preview to 500 words
def limit_text(text, word_limit=500):
words = text.split()
return " ".join(words[:word_limit]) + ("..." if len(words) > word_limit else "")
# CLEAN AND NORMALIZE TEXT
def clean_text(text):
# Remove newlines and extra spaces
text = text.replace('\r\n', ' ').replace('\n', ' ')
text = re.sub(r'\s+', ' ', text)
# Remove page number markers like "Page 1 of 10"
text = re.sub(r'Page\s+\d+\s+of\s+\d+', '', text, flags=re.IGNORECASE)
# Remove long dashed or underscored lines
text = re.sub(r'[_]{5,}', '', text) # Lines with underscores: _____
text = re.sub(r'[-]{5,}', '', text) # Lines with hyphens: -----
# Remove long dotted separators
text = re.sub(r'[.]{4,}', '', text) # Dots like "......" or ".............."
# Trim final leading/trailing whitespace
text = text.strip()
return text
#######################################################################################################################
# LOADING MODELS FOR DIVIDING TEXT INTO SECTIONS
# Load token from .env file
load_dotenv()
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
def classify_zero_shot_hfapi(text, labels):
if not HF_API_TOKEN:
return "β Hugging Face token not found."
headers = {
"Authorization": f"Bearer {HF_API_TOKEN}"
}
payload = {
"inputs": text,
"parameters": {
"candidate_labels": labels
}
}
response = requests.post(
"https://api-inference.huggingface.co/models/valhalla/distilbart-mnli-12-1",
headers=headers,
json=payload
)
if response.status_code != 200:
return f"β Error from HF API: {response.status_code} - {response.text}"
result = response.json()
return result["labels"][0] # Return the top label
# Labels for section classification
SECTION_LABELS = ["Facts", "Arguments", "Judgment", "Other"]
def classify_chunk(text):
return classify_zero_shot_hfapi(text, SECTION_LABELS)
# return result['labels'][0] if result and 'labels' in result else "Other"
# NEW: NLP-based sectioning using zero-shot classification
def section_by_zero_shot(text):
sections = {"Facts": "", "Arguments": "", "Judgment": "", "Other": ""}
sentences = sent_tokenize(text)
chunk = ""
for i, sent in enumerate(sentences):
chunk += sent + " "
if (i + 1) % 3 == 0 or i == len(sentences) - 1:
label = classify_chunk(chunk.strip())
print(f"π Chunk: {chunk[:60]}...\nπ Predicted Label: {label}")
# π Normalize label (title case and fallback)
label = label.capitalize()
if label not in sections:
label = "Other"
sections[label] += chunk + "\n"
chunk = ""
return sections
#######################################################################################################################
# EXTRACTING TEXT FROM UPLOADED FILES
# Function to extract text from uploaded file
def extract_text(file):
if file.name.endswith(".pdf"):
reader = PyPDF2.PdfReader(file)
full_text = "\n".join(page.extract_text() or "" for page in reader.pages)
elif file.name.endswith(".docx"):
full_text = docx2txt.process(file)
elif file.name.endswith(".txt"):
full_text = file.read().decode("utf-8")
else:
return "Unsupported file type."
return full_text # Full text is needed for summarization
#######################################################################################################################
# EXTRACTIVE AND ABSTRACTIVE SUMMARIZATION
@st.cache_resource
def load_legalbert():
return SentenceTransformer("nlpaueb/legal-bert-base-uncased")
legalbert_model = load_legalbert()
@st.cache_resource
def load_led():
tokenizer = LEDTokenizer.from_pretrained("allenai/led-base-16384")
model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
return tokenizer, model
tokenizer_led, model_led = load_led()
def legalbert_extractive_summary(text, top_ratio=0.2):
sentences = sent_tokenize(text)
top_k = max(3, int(len(sentences) * top_ratio))
if len(sentences) <= top_k:
return text
# Embeddings & scoring
sentence_embeddings = legalbert_model.encode(sentences, convert_to_tensor=True)
doc_embedding = torch.mean(sentence_embeddings, dim=0)
cosine_scores = util.pytorch_cos_sim(doc_embedding, sentence_embeddings)[0]
top_results = torch.topk(cosine_scores, k=top_k)
# Preserve original order
selected_sentences = [sentences[i] for i in sorted(top_results.indices.tolist())]
return " ".join(selected_sentences)
# Add LED Abstractive Summarization
def led_abstractive_summary(text, max_length=512, min_length=100):
inputs = tokenizer_led(
text, return_tensors="pt", padding="max_length",
truncation=True, max_length=4096
)
global_attention_mask = torch.zeros_like(inputs["input_ids"])
global_attention_mask[:, 0] = 1 # Global attention on first token
outputs = model_led.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
global_attention_mask=global_attention_mask,
max_length=max_length,
min_length=min_length,
length_penalty=2.0,
num_beams=4
)
return tokenizer_led.decode(outputs[0], skip_special_tokens=True)
def hybrid_summary_by_section(text, top_ratio=0.8):
cleaned_text = clean_text(text)
sections = section_by_zero_shot(cleaned_text) # Split into Facts, Arguments, Judgment, Other
summary_parts = []
for name, content in sections.items():
if content.strip():
# Calculate dynamic number of sentences to extract based on section length
sentences = sent_tokenize(content)
top_k = max(3, int(len(sentences) * top_ratio))
# Extractive summary using Legal-BERT
extractive = legalbert_extractive_summary(content, 0.8)
# Abstractive summary using LED (handles long input)
abstractive = led_abstractive_summary(extractive)
# Combine both
hybrid = f"π **Extractive Summary:**\n{extractive}\n\nπ **Abstractive Summary:**\n{abstractive}"
summary_parts.append(f"### π {name} Section:\n{clean_text(hybrid)}")
return "\n\n".join(summary_parts)
# return abstractive
#######################################################################################################################
# STREAMLIT APP INTERFACE CODE
# Initialize or load chat history
if "messages" not in st.session_state:
st.session_state.messages = load_chat_history()
# Initialize last_uploaded if not set
if "last_uploaded" not in st.session_state:
st.session_state.last_uploaded = None
# Sidebar with a button to delete chat history
with st.sidebar:
st.subheader("βοΈ Options")
if st.button("Delete Chat History"):
st.session_state.messages = []
st.session_state.last_uploaded = None
save_chat_history([])
# Display chat messages with a typing effect
def display_with_typing_effect(text, speed=0.005):
placeholder = st.empty()
displayed_text = ""
for char in text:
displayed_text += char
placeholder.markdown(displayed_text)
time.sleep(speed)
return displayed_text
# Show existing chat messages
for message in st.session_state.messages:
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
# Standard chat input field
prompt = st.chat_input("Type a message...")
# # Place file uploader AFTER the chat input to keep layout consistent
# uploaded_file = st.file_uploader("π Upload a file (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
# Place uploader before the chat so it's always visible
with st.container():
st.subheader("π Upload a Legal Document")
uploaded_file = st.file_uploader("Upload a file (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
reprocess_btn = st.button("π Reprocess Last Uploaded File")
# Hashing logic
def get_file_hash(file):
file.seek(0)
content = file.read()
file.seek(0)
return hashlib.md5(content).hexdigest()
# # Handle file upload and generate hybrid summary
# if uploaded_file:
# file_hash = get_file_hash(uploaded_file)
# # Check if this file is already uploaded
# if file_hash != st.session_state.get("last_uploaded_hash"):
# raw_text = extract_text(uploaded_file)
# summary_text = hybrid_summary_by_section(raw_text)
# st.session_state.messages.append({
# "role": "user",
# "content": f"π€ Uploaded **{uploaded_file.name}**"
# })
# with st.chat_message("assistant", avatar=BOT_AVATAR):
# preview_text = f"π§Ύ **Hybrid Summary of {uploaded_file.name}:**\n\n{summary_text}"
# display_with_typing_effect(clean_text(preview_text), speed=0.000001)
# st.session_state.messages.append({
# "role": "assistant",
# "content": preview_text
# })
# st.session_state.last_uploaded_hash = file_hash
# save_chat_history(st.session_state.messages)
# # Force rerun to reset uploader state & redraw layout properly
# st.rerun()
if uploaded_file:
file_hash = get_file_hash(uploaded_file)
# Check if file is new OR reprocess is triggered
if file_hash != st.session_state.get("last_uploaded_hash") or reprocess_btn:
raw_text = extract_text(uploaded_file)
summary_text = hybrid_summary_by_section(raw_text)
st.session_state.messages.append({
"role": "user",
"content": f"π€ Uploaded **{uploaded_file.name}**"
})
with st.chat_message("assistant", avatar=BOT_AVATAR):
preview_text = f"π§Ύ **Hybrid Summary of {uploaded_file.name}:**\n\n{summary_text}"
display_with_typing_effect(clean_text(preview_text), speed=0.000001)
st.session_state.messages.append({
"role": "assistant",
"content": preview_text
})
# Save this file hash only if itβs a new upload (avoid overwriting during reprocess)
if not reprocess_btn:
st.session_state.last_uploaded_hash = file_hash
save_chat_history(st.session_state.messages)
st.rerun()
# Handle chat input and return hybrid summary
if prompt:
raw_text = prompt
summary_text = hybrid_summary_by_section(raw_text)
st.session_state.messages.append({
"role": "user",
"content": prompt
})
with st.chat_message("assistant", avatar=BOT_AVATAR):
bot_response = f"π **Hybrid Summary of your text:**\n\n{summary_text}"
display_with_typing_effect(clean_text(bot_response), speed=0.000005)
st.session_state.messages.append({
"role": "assistant",
"content": bot_response
})
save_chat_history(st.session_state.messages)
st.rerun()
|