File size: 8,772 Bytes
de51c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# data loader
from __future__ import print_function, division
import glob
import torch
from skimage import io, transform, color
import numpy as np
import random
import math
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from PIL import Image

#==========================dataset load==========================
class RescaleT(object):

	def __init__(self,output_size):
		assert isinstance(output_size,(int,tuple))
		self.output_size = output_size

	def __call__(self,sample):
		imidx, image, label = sample['imidx'], sample['image'],sample['label']

		h, w = image.shape[:2]

		if isinstance(self.output_size,int):
			if h > w:
				new_h, new_w = self.output_size*h/w,self.output_size
			else:
				new_h, new_w = self.output_size,self.output_size*w/h
		else:
			new_h, new_w = self.output_size

		new_h, new_w = int(new_h), int(new_w)

		# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
		# img = transform.resize(image,(new_h,new_w),mode='constant')
		# lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)

		img = transform.resize(image,(self.output_size,self.output_size),mode='constant')
		lbl = transform.resize(label,(self.output_size,self.output_size),mode='constant', order=0, preserve_range=True)

		return {'imidx':imidx, 'image':img,'label':lbl}

class Rescale(object):

	def __init__(self,output_size):
		assert isinstance(output_size,(int,tuple))
		self.output_size = output_size

	def __call__(self,sample):
		imidx, image, label = sample['imidx'], sample['image'],sample['label']

		if random.random() >= 0.5:
			image = image[::-1]
			label = label[::-1]

		h, w = image.shape[:2]

		if isinstance(self.output_size,int):
			if h > w:
				new_h, new_w = self.output_size*h/w,self.output_size
			else:
				new_h, new_w = self.output_size,self.output_size*w/h
		else:
			new_h, new_w = self.output_size

		new_h, new_w = int(new_h), int(new_w)

		# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
		img = transform.resize(image,(new_h,new_w),mode='constant')
		lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)

		return {'imidx':imidx, 'image':img,'label':lbl}

class RandomCrop(object):

	def __init__(self,output_size):
		assert isinstance(output_size, (int, tuple))
		if isinstance(output_size, int):
			self.output_size = (output_size, output_size)
		else:
			assert len(output_size) == 2
			self.output_size = output_size
	def __call__(self,sample):
		imidx, image, label = sample['imidx'], sample['image'], sample['label']

		if random.random() >= 0.5:
			image = image[::-1]
			label = label[::-1]

		h, w = image.shape[:2]
		new_h, new_w = self.output_size

		top = np.random.randint(0, h - new_h)
		left = np.random.randint(0, w - new_w)

		image = image[top: top + new_h, left: left + new_w]
		label = label[top: top + new_h, left: left + new_w]

		return {'imidx':imidx,'image':image, 'label':label}

class ToTensor(object):
	"""Convert ndarrays in sample to Tensors."""

	def __call__(self, sample):

		imidx, image, label = sample['imidx'], sample['image'], sample['label']

		tmpImg = np.zeros((image.shape[0],image.shape[1],3))
		tmpLbl = np.zeros(label.shape)

		image = image/np.max(image)
		if(np.max(label)<1e-6):
			label = label
		else:
			label = label/np.max(label)

		if image.shape[2]==1:
			tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
			tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
			tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
		else:
			tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
			tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
			tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225

		tmpLbl[:,:,0] = label[:,:,0]


		tmpImg = tmpImg.transpose((2, 0, 1))
		tmpLbl = label.transpose((2, 0, 1))

		return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}

class ToTensorLab(object):
	"""Convert ndarrays in sample to Tensors."""
	def __init__(self,flag=0):
		self.flag = flag

	def __call__(self, sample):

		imidx, image, label =sample['imidx'], sample['image'], sample['label']

		tmpLbl = np.zeros(label.shape)

		if(np.max(label)<1e-6):
			label = label
		else:
			label = label/np.max(label)

		# change the color space
		if self.flag == 2: # with rgb and Lab colors
			tmpImg = np.zeros((image.shape[0],image.shape[1],6))
			tmpImgt = np.zeros((image.shape[0],image.shape[1],3))
			if image.shape[2]==1:
				tmpImgt[:,:,0] = image[:,:,0]
				tmpImgt[:,:,1] = image[:,:,0]
				tmpImgt[:,:,2] = image[:,:,0]
			else:
				tmpImgt = image
			tmpImgtl = color.rgb2lab(tmpImgt)

			# nomalize image to range [0,1]
			tmpImg[:,:,0] = (tmpImgt[:,:,0]-np.min(tmpImgt[:,:,0]))/(np.max(tmpImgt[:,:,0])-np.min(tmpImgt[:,:,0]))
			tmpImg[:,:,1] = (tmpImgt[:,:,1]-np.min(tmpImgt[:,:,1]))/(np.max(tmpImgt[:,:,1])-np.min(tmpImgt[:,:,1]))
			tmpImg[:,:,2] = (tmpImgt[:,:,2]-np.min(tmpImgt[:,:,2]))/(np.max(tmpImgt[:,:,2])-np.min(tmpImgt[:,:,2]))
			tmpImg[:,:,3] = (tmpImgtl[:,:,0]-np.min(tmpImgtl[:,:,0]))/(np.max(tmpImgtl[:,:,0])-np.min(tmpImgtl[:,:,0]))
			tmpImg[:,:,4] = (tmpImgtl[:,:,1]-np.min(tmpImgtl[:,:,1]))/(np.max(tmpImgtl[:,:,1])-np.min(tmpImgtl[:,:,1]))
			tmpImg[:,:,5] = (tmpImgtl[:,:,2]-np.min(tmpImgtl[:,:,2]))/(np.max(tmpImgtl[:,:,2])-np.min(tmpImgtl[:,:,2]))

			# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))

			tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
			tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
			tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])
			tmpImg[:,:,3] = (tmpImg[:,:,3]-np.mean(tmpImg[:,:,3]))/np.std(tmpImg[:,:,3])
			tmpImg[:,:,4] = (tmpImg[:,:,4]-np.mean(tmpImg[:,:,4]))/np.std(tmpImg[:,:,4])
			tmpImg[:,:,5] = (tmpImg[:,:,5]-np.mean(tmpImg[:,:,5]))/np.std(tmpImg[:,:,5])

		elif self.flag == 1: #with Lab color
			tmpImg = np.zeros((image.shape[0],image.shape[1],3))

			if image.shape[2]==1:
				tmpImg[:,:,0] = image[:,:,0]
				tmpImg[:,:,1] = image[:,:,0]
				tmpImg[:,:,2] = image[:,:,0]
			else:
				tmpImg = image

			tmpImg = color.rgb2lab(tmpImg)

			# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))

			tmpImg[:,:,0] = (tmpImg[:,:,0]-np.min(tmpImg[:,:,0]))/(np.max(tmpImg[:,:,0])-np.min(tmpImg[:,:,0]))
			tmpImg[:,:,1] = (tmpImg[:,:,1]-np.min(tmpImg[:,:,1]))/(np.max(tmpImg[:,:,1])-np.min(tmpImg[:,:,1]))
			tmpImg[:,:,2] = (tmpImg[:,:,2]-np.min(tmpImg[:,:,2]))/(np.max(tmpImg[:,:,2])-np.min(tmpImg[:,:,2]))

			tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
			tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
			tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])

		else: # with rgb color
			tmpImg = np.zeros((image.shape[0],image.shape[1],3))
			image = image/np.max(image)
			if image.shape[2]==1:
				tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
				tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
				tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
			else:
				tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
				tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
				tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225

		tmpLbl[:,:,0] = label[:,:,0]


		tmpImg = tmpImg.transpose((2, 0, 1))
		tmpLbl = label.transpose((2, 0, 1))

		return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}

class SalObjDataset(Dataset):
	def __init__(self,img_name_list,lbl_name_list,transform=None):
		# self.root_dir = root_dir
		# self.image_name_list = glob.glob(image_dir+'*.png')
		# self.label_name_list = glob.glob(label_dir+'*.png')
		self.image_name_list = img_name_list
		self.label_name_list = lbl_name_list
		self.transform = transform

	def __len__(self):
		return len(self.image_name_list)

	def __getitem__(self,idx):

		# image = Image.open(self.image_name_list[idx])#io.imread(self.image_name_list[idx])
		# label = Image.open(self.label_name_list[idx])#io.imread(self.label_name_list[idx])

		image = io.imread(self.image_name_list[idx])
		imname = self.image_name_list[idx]
		imidx = np.array([idx])

		if(0==len(self.label_name_list)):
			label_3 = np.zeros(image.shape)
		else:
			label_3 = io.imread(self.label_name_list[idx])

		label = np.zeros(label_3.shape[0:2])
		if(3==len(label_3.shape)):
			label = label_3[:,:,0]
		elif(2==len(label_3.shape)):
			label = label_3

		if(3==len(image.shape) and 2==len(label.shape)):
			label = label[:,:,np.newaxis]
		elif(2==len(image.shape) and 2==len(label.shape)):
			image = image[:,:,np.newaxis]
			label = label[:,:,np.newaxis]

		sample = {'imidx':imidx, 'image':image, 'label':label}

		if self.transform:
			sample = self.transform(sample)

		return sample