File size: 6,953 Bytes
ff49a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a483b6
ff49a48
 
 
 
 
 
5a483b6
ff49a48
 
5a483b6
ff49a48
 
 
 
 
 
90d11eb
 
2caa23c
90d11eb
 
 
 
 
 
 
ff49a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db20d3e
ff49a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import math
import os
from dataclasses import dataclass, field
from typing import List, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import trimesh
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image

from .models.isosurface import MarchingCubeHelper
from .utils import (
    BaseModule,
    ImagePreprocessor,
    find_class,
    get_spherical_cameras,
    scale_tensor,
)


class TSR(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        cond_image_size: int

        image_tokenizer_cls: str
        image_tokenizer: dict

        tokenizer_cls: str
        tokenizer: dict

        backbone_cls: str
        backbone: dict

        post_processor_cls: str
        post_processor: dict

        decoder_cls: str
        decoder: dict

        renderer_cls: str
        renderer: dict

    cfg: Config

    @classmethod
    def from_pretrained(
        cls, pretrained_model_name_or_path: str, config_name: str, weight_name: str, token=None
    ):
        if os.path.isdir(pretrained_model_name_or_path):
            config_path = os.path.join(pretrained_model_name_or_path, config_name)
            weight_path = os.path.join(pretrained_model_name_or_path, weight_name)
        else:
            config_path = hf_hub_download(
                repo_id=pretrained_model_name_or_path, filename=config_name, token=token
            )
            weight_path = hf_hub_download(
                repo_id=pretrained_model_name_or_path, filename=weight_name, token=token
            )

        cfg = OmegaConf.load(config_path)
        OmegaConf.resolve(cfg)
        model = cls(cfg)
        ckpt = torch.load(weight_path, map_location="cpu")
        
        if "module" in list(ckpt["state_dict"].keys())[0]:
            state_dict = {key.replace('module.',''): item for key, item in ckpt["state_dict"].items()}
        else:
            state_dict = ckpt["state_dict"]
        missing_states = set(model.state_dict().keys()) - set(state_dict.keys())
        if len(missing_states) > 0:
            warnings.warn("Missing keys ! : {}".format(missing_states))
            
        model.load_state_dict(state_dict)
        return model

    def configure(self):
        self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
            self.cfg.image_tokenizer
        )
        self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer)
        self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone)
        self.post_processor = find_class(self.cfg.post_processor_cls)(
            self.cfg.post_processor
        )
        self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder)
        self.renderer = find_class(self.cfg.renderer_cls)(self.cfg.renderer)
        self.image_processor = ImagePreprocessor()
        self.isosurface_helper = None

    def forward(
        self,
        image: Union[
            PIL.Image.Image,
            np.ndarray,
            torch.FloatTensor,
            List[PIL.Image.Image],
            List[np.ndarray],
            List[torch.FloatTensor],
        ],
        device: str,
    ) -> torch.FloatTensor:
        rgb_cond = self.image_processor(image, self.cfg.cond_image_size)[:, None].to(
            device
        )
        batch_size = rgb_cond.shape[0]

        input_image_tokens: torch.Tensor = self.image_tokenizer(
            rearrange(rgb_cond, "B Nv H W C -> B Nv C H W", Nv=1),
        )

        input_image_tokens = rearrange(
            input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=1
        )

        tokens: torch.Tensor = self.tokenizer(batch_size)

        tokens = self.backbone(
            tokens,
            encoder_hidden_states=input_image_tokens,
        )

        scene_codes = self.post_processor(self.tokenizer.detokenize(tokens))
        return scene_codes

    def render(
        self,
        scene_codes,
        n_views: int,
        elevation_deg: float = 0.0,
        camera_distance: float = 1.9,
        fovy_deg: float = 40.0,
        height: int = 256,
        width: int = 256,
        return_type: str = "pil",
    ):
        rays_o, rays_d = get_spherical_cameras(
            n_views, elevation_deg, camera_distance, fovy_deg, height, width
        )
        rays_o, rays_d = rays_o.to(scene_codes.device), rays_d.to(scene_codes.device)

        def process_output(image: torch.FloatTensor):
            if return_type == "pt":
                return image
            elif return_type == "np":
                return image.detach().cpu().numpy()
            elif return_type == "pil":
                return Image.fromarray(
                    (image.detach().cpu().numpy() * 255.0).astype(np.uint8)
                )
            else:
                raise NotImplementedError

        images = []
        for scene_code in scene_codes:
            images_ = []
            for i in range(n_views):
                with torch.no_grad():
                    image = self.renderer(
                        self.decoder, scene_code, rays_o[i], rays_d[i]
                    )
                images_.append(process_output(image))
            images.append(images_)

        return images

    def set_marching_cubes_resolution(self, resolution: int):
        if (
            self.isosurface_helper is not None
            and self.isosurface_helper.resolution == resolution
        ):
            return
        self.isosurface_helper = MarchingCubeHelper(resolution)

    def extract_mesh(self, scene_codes, resolution: int = 256, threshold: float = 25.0):
        self.set_marching_cubes_resolution(resolution)
        meshes = []
        for scene_code in scene_codes:
            with torch.no_grad():
                density = self.renderer.query_triplane(
                    self.decoder,
                    scale_tensor(
                        self.isosurface_helper.grid_vertices.to(scene_codes.device),
                        self.isosurface_helper.points_range,
                        (-self.renderer.cfg.radius, self.renderer.cfg.radius),
                    ),
                    scene_code,
                )["density_act"]
            v_pos, t_pos_idx = self.isosurface_helper(-(density - threshold))
            v_pos = scale_tensor(
                v_pos,
                self.isosurface_helper.points_range,
                (-self.renderer.cfg.radius, self.renderer.cfg.radius),
            )
            with torch.no_grad():
                color = self.renderer.query_triplane(
                    self.decoder,
                    v_pos,
                    scene_code,
                )["color"]
            mesh = trimesh.Trimesh(
                vertices=v_pos.cpu().numpy(),
                faces=t_pos_idx.cpu().numpy(),
                vertex_colors=color.cpu().numpy(),
            )
            meshes.append(mesh)
        return meshes