Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,731 Bytes
ff49a48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import importlib
import math
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import imageio
import numpy as np
import PIL.Image
import rembg
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import DictConfig, OmegaConf
from PIL import Image
def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any:
scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg)
return scfg
def find_class(cls_string):
module_string = ".".join(cls_string.split(".")[:-1])
cls_name = cls_string.split(".")[-1]
module = importlib.import_module(module_string, package=None)
cls = getattr(module, cls_name)
return cls
def get_intrinsic_from_fov(fov, H, W, bs=-1):
focal_length = 0.5 * H / np.tan(0.5 * fov)
intrinsic = np.identity(3, dtype=np.float32)
intrinsic[0, 0] = focal_length
intrinsic[1, 1] = focal_length
intrinsic[0, 2] = W / 2.0
intrinsic[1, 2] = H / 2.0
if bs > 0:
intrinsic = intrinsic[None].repeat(bs, axis=0)
return torch.from_numpy(intrinsic)
class BaseModule(nn.Module):
@dataclass
class Config:
pass
cfg: Config # add this to every subclass of BaseModule to enable static type checking
def __init__(
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
self.configure(*args, **kwargs)
def configure(self, *args, **kwargs) -> None:
raise NotImplementedError
class ImagePreprocessor:
def convert_and_resize(
self,
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
size: int,
):
if isinstance(image, PIL.Image.Image):
image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0)
elif isinstance(image, np.ndarray):
if image.dtype == np.uint8:
image = torch.from_numpy(image.astype(np.float32) / 255.0)
else:
image = torch.from_numpy(image)
elif isinstance(image, torch.Tensor):
pass
batched = image.ndim == 4
if not batched:
image = image[None, ...]
image = F.interpolate(
image.permute(0, 3, 1, 2),
(size, size),
mode="bilinear",
align_corners=False,
antialias=True,
).permute(0, 2, 3, 1)
if not batched:
image = image[0]
return image
def __call__(
self,
image: Union[
PIL.Image.Image,
np.ndarray,
torch.FloatTensor,
List[PIL.Image.Image],
List[np.ndarray],
List[torch.FloatTensor],
],
size: int,
) -> Any:
if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4:
image = self.convert_and_resize(image, size)
else:
if not isinstance(image, list):
image = [image]
image = [self.convert_and_resize(im, size) for im in image]
image = torch.stack(image, dim=0)
return image
def rays_intersect_bbox(
rays_o: torch.Tensor,
rays_d: torch.Tensor,
radius: float,
near: float = 0.0,
valid_thresh: float = 0.01,
):
input_shape = rays_o.shape[:-1]
rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3)
rays_d_valid = torch.where(
rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d
)
if type(radius) in [int, float]:
radius = torch.FloatTensor(
[[-radius, radius], [-radius, radius], [-radius, radius]]
).to(rays_o.device)
radius = (
1.0 - 1.0e-3
) * radius # tighten the radius to make sure the intersection point lies in the bounding box
interx0 = (radius[..., 1] - rays_o) / rays_d_valid
interx1 = (radius[..., 0] - rays_o) / rays_d_valid
t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near)
t_far = torch.maximum(interx0, interx1).amin(dim=-1)
# check wheter a ray intersects the bbox or not
rays_valid = t_far - t_near > valid_thresh
t_near[torch.where(~rays_valid)] = 0.0
t_far[torch.where(~rays_valid)] = 0.0
t_near = t_near.view(*input_shape, 1)
t_far = t_far.view(*input_shape, 1)
rays_valid = rays_valid.view(*input_shape)
return t_near, t_far, rays_valid
def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any:
if chunk_size <= 0:
return func(*args, **kwargs)
B = None
for arg in list(args) + list(kwargs.values()):
if isinstance(arg, torch.Tensor):
B = arg.shape[0]
break
assert (
B is not None
), "No tensor found in args or kwargs, cannot determine batch size."
out = defaultdict(list)
out_type = None
# max(1, B) to support B == 0
for i in range(0, max(1, B), chunk_size):
out_chunk = func(
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
if out_chunk is None:
continue
out_type = type(out_chunk)
if isinstance(out_chunk, torch.Tensor):
out_chunk = {0: out_chunk}
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
chunk_length = len(out_chunk)
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
elif isinstance(out_chunk, dict):
pass
else:
print(
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
)
exit(1)
for k, v in out_chunk.items():
v = v if torch.is_grad_enabled() else v.detach()
out[k].append(v)
if out_type is None:
return None
out_merged: Dict[Any, Optional[torch.Tensor]] = {}
for k, v in out.items():
if all([vv is None for vv in v]):
# allow None in return value
out_merged[k] = None
elif all([isinstance(vv, torch.Tensor) for vv in v]):
out_merged[k] = torch.cat(v, dim=0)
else:
raise TypeError(
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
)
if out_type is torch.Tensor:
return out_merged[0]
elif out_type in [tuple, list]:
return out_type([out_merged[i] for i in range(chunk_length)])
elif out_type is dict:
return out_merged
ValidScale = Union[Tuple[float, float], torch.FloatTensor]
def scale_tensor(dat: torch.FloatTensor, inp_scale: ValidScale, tgt_scale: ValidScale):
if inp_scale is None:
inp_scale = (0, 1)
if tgt_scale is None:
tgt_scale = (0, 1)
if isinstance(tgt_scale, torch.FloatTensor):
assert dat.shape[-1] == tgt_scale.shape[-1]
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
return dat
def get_activation(name) -> Callable:
if name is None:
return lambda x: x
name = name.lower()
if name == "none":
return lambda x: x
elif name == "exp":
return lambda x: torch.exp(x)
elif name == "sigmoid":
return lambda x: torch.sigmoid(x)
elif name == "tanh":
return lambda x: torch.tanh(x)
elif name == "softplus":
return lambda x: F.softplus(x)
else:
try:
return getattr(F, name)
except AttributeError:
raise ValueError(f"Unknown activation function: {name}")
def get_ray_directions(
H: int,
W: int,
focal: Union[float, Tuple[float, float]],
principal: Optional[Tuple[float, float]] = None,
use_pixel_centers: bool = True,
normalize: bool = True,
) -> torch.FloatTensor:
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
pixel_center = 0.5 if use_pixel_centers else 0
if isinstance(focal, float):
fx, fy = focal, focal
cx, cy = W / 2, H / 2
else:
fx, fy = focal
assert principal is not None
cx, cy = principal
i, j = torch.meshgrid(
torch.arange(W, dtype=torch.float32) + pixel_center,
torch.arange(H, dtype=torch.float32) + pixel_center,
indexing="xy",
)
directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1)
if normalize:
directions = F.normalize(directions, dim=-1)
return directions
def get_rays(
directions,
c2w,
keepdim=False,
noise_scale=0.0,
normalize=False,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
# Rotate ray directions from camera coordinate to the world coordinate
assert directions.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
if c2w.ndim == 2: # (4, 4)
c2w = c2w[None, :, :]
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4)
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3)
rays_o = c2w[:, :3, 3].expand(rays_d.shape)
elif directions.ndim == 3: # (H, W, 3)
assert c2w.ndim in [2, 3]
if c2w.ndim == 2: # (4, 4)
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
-1
) # (H, W, 3)
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
elif directions.ndim == 4: # (B, H, W, 3)
assert c2w.ndim == 3 # (B, 4, 4)
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
# add camera noise to avoid grid-like artifect
# https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373
if noise_scale > 0:
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale
if normalize:
rays_d = F.normalize(rays_d, dim=-1)
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
def get_spherical_cameras(
n_views: int,
elevation_deg: float,
camera_distance: float,
fovy_deg: float,
height: int,
width: int,
):
azimuth_deg = torch.linspace(0, 360.0, n_views + 1)[:n_views]
elevation_deg = torch.full_like(azimuth_deg, elevation_deg)
camera_distances = torch.full_like(elevation_deg, camera_distance)
elevation = elevation_deg * math.pi / 180
azimuth = azimuth_deg * math.pi / 180
# convert spherical coordinates to cartesian coordinates
# right hand coordinate system, x back, y right, z up
# elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
camera_positions = torch.stack(
[
camera_distances * torch.cos(elevation) * torch.cos(azimuth),
camera_distances * torch.cos(elevation) * torch.sin(azimuth),
camera_distances * torch.sin(elevation),
],
dim=-1,
)
# default scene center at origin
center = torch.zeros_like(camera_positions)
# default camera up direction as +z
up = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None, :].repeat(n_views, 1)
fovy = torch.full_like(elevation_deg, fovy_deg) * math.pi / 180
lookat = F.normalize(center - camera_positions, dim=-1)
right = F.normalize(torch.cross(lookat, up), dim=-1)
up = F.normalize(torch.cross(right, lookat), dim=-1)
c2w3x4 = torch.cat(
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
dim=-1,
)
c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1)
c2w[:, 3, 3] = 1.0
# get directions by dividing directions_unit_focal by focal length
focal_length = 0.5 * height / torch.tan(0.5 * fovy)
directions_unit_focal = get_ray_directions(
H=height,
W=width,
focal=1.0,
)
directions = directions_unit_focal[None, :, :, :].repeat(n_views, 1, 1, 1)
directions[:, :, :, :2] = (
directions[:, :, :, :2] / focal_length[:, None, None, None]
)
# must use normalize=True to normalize directions here
rays_o, rays_d = get_rays(directions, c2w, keepdim=True, normalize=True)
return rays_o, rays_d
def remove_background(
image: PIL.Image.Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def resize_foreground(
image: PIL.Image.Image,
ratio: float,
) -> PIL.Image.Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = PIL.Image.fromarray(new_image)
return new_image
def save_video(
frames: List[PIL.Image.Image],
output_path: str,
fps: int = 30,
):
# use imageio to save video
frames = [np.array(frame) for frame in frames]
writer = imageio.get_writer(output_path, fps=fps)
for frame in frames:
writer.append_data(frame)
writer.close()
_dir2vec = {
"+x": np.array([1, 0, 0]),
"+y": np.array([0, 1, 0]),
"+z": np.array([0, 0, 1]),
"-x": np.array([-1, 0, 0]),
"-y": np.array([0, -1, 0]),
"-z": np.array([0, 0, -1]),
}
def to_gradio_3d_orientation(vertices):
z_, x_ = _dir2vec["+y"], _dir2vec["-z"]
y_ = np.cross(z_, x_)
std2mesh = np.stack([x_, y_, z_], axis=0).T
vertices = np.dot(std2mesh, vertices.T).T
return vertices
|