Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
import datasets | |
from mini_agents import MasterAgentWrapper | |
from utils import get_full_file_path | |
from smolagents.memory import ActionStep, PlanningStep, TaskStep, SystemPromptStep, FinalAnswerStep | |
from typing import Optional | |
import numpy as np | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
columns = [ | |
'task_id', | |
'step_class', | |
# Common attributes (from MemoryStep base class) | |
'model_input_messages', | |
'tool_calls', | |
'start_time', | |
'end_time', | |
'step_number', | |
'error', | |
'duration', | |
'model_output_message', | |
'model_output', | |
'observations', | |
'observations_images', | |
'action_output', | |
# PlanningStep attributes | |
'plan', | |
# TaskStep attributes | |
'task', | |
'task_images', | |
# SystemPromptStep attributes | |
'system_prompt', | |
# FinalAnswerStep attributes | |
'final_answer' | |
] | |
class BasicAgent: | |
def __init__(self): | |
self.agent = MasterAgentWrapper() # This is now the MasterAgentWrapper instance | |
print("Master Agent initialized.") | |
def __call__(self, question: str, task_id: str, df_agent_steps: pd.DataFrame) -> tuple[str, pd.DataFrame]: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
try: | |
# Use the wrapper's run method which handles browser tools safely | |
fixed_answer = self.agent.run(question) | |
# Log steps | |
all_steps = self.agent.master_agent.memory.steps | |
new_rows = [] # List to store new rows | |
def serialize_value(value): | |
"""Convert complex objects to serializable format""" | |
if hasattr(value, 'dict'): | |
return value.dict() | |
elif hasattr(value, '__dict__'): | |
return str(value.__dict__) | |
elif isinstance(value, (list, tuple)): | |
return [serialize_value(item) for item in value] | |
elif isinstance(value, dict): | |
return {k: serialize_value(v) for k, v in value.items()} | |
return value | |
for step in all_steps: | |
if isinstance(step, ActionStep): | |
step_class = "ActionStep" | |
elif isinstance(step, PlanningStep): | |
step_class = "PlanningStep" | |
elif isinstance(step, TaskStep): | |
step_class = "TaskStep" | |
elif isinstance(step, SystemPromptStep): | |
step_class = "SystemPromptStep" | |
elif isinstance(step, FinalAnswerStep): | |
step_class = "FinalAnswerStep" | |
else: | |
step_class = "UnknownStep" | |
step_dict = step.dict() | |
# Create a new row with default None values | |
new_row = {col: "None" for col in df_agent_steps.columns} | |
# Update with actual values | |
new_row['task_id'] = task_id | |
new_row['step_class'] = step_class | |
# Serialize complex objects before adding to DataFrame | |
for key, value in step_dict.items(): | |
if key in df_agent_steps.columns: | |
try: | |
new_row[key] = serialize_value(value) | |
except Exception as e: | |
print(f"Warning: Could not serialize {key}, using string representation: {e}") | |
new_row[key] = str(value) | |
new_rows.append(new_row) | |
# Append all new rows at once | |
final_row = { | |
'task_id': task_id, | |
'step_class': 'FinalAnswerStep', | |
'model_input_messages': [question], | |
'model_output_message': fixed_answer, | |
'model_output': fixed_answer, | |
} | |
new_rows.append(final_row) | |
if new_rows: | |
df_agent_steps = pd.concat([df_agent_steps, pd.DataFrame(new_rows)], ignore_index=True) | |
print(f"Agent returning fixed answer: {fixed_answer}") | |
return fixed_answer, df_agent_steps | |
except Exception as e: | |
print(f"Error in agent execution: {e}") | |
raise | |
def check_required_env_vars() -> tuple[bool, Optional[str]]: | |
"""Check if required environment variables are set""" | |
missing_vars = [] | |
# Check HF_TOKEN | |
if not os.getenv("HUGGINGFACE_API_KEY"): | |
missing_vars.append("HUGGINGFACE_API_KEY") | |
# Check SPACE_ID (only warn, not required) | |
if not os.getenv("SPACE_ID"): | |
print("⚠️ SPACE_ID not set - this is normal when running locally") | |
if missing_vars: | |
return False, f"Missing required environment variables: {', '.join(missing_vars)}" | |
return True, None | |
def save_dataset_to_hub(df: pd.DataFrame, dataset_name: str) -> tuple[bool, str]: | |
"""Save DataFrame to Hugging Face dataset with proper error handling""" | |
# Check environment variables | |
env_ok, env_error = check_required_env_vars() | |
if not env_ok: | |
return False, f"Cannot save dataset: {env_error}" | |
try: | |
if len(df) == 0: | |
return False, "Cannot save empty dataset" | |
print(f"Saving {len(df)} steps to {dataset_name}...") | |
# Create a copy of the DataFrame to avoid modifying the original | |
df_to_save = df.copy() | |
def is_none_or_nan(x): | |
"""Safely check if a value is None or NaN""" | |
if x is None: | |
return True | |
if isinstance(x, (float, np.floating)) and np.isnan(x): | |
return True | |
if x == "None" or x == "nan" or x == "NaN": | |
return True | |
return False | |
def ensure_consistent_type(x, column_name): | |
"""Ensure consistent type within a column""" | |
try: | |
if is_none_or_nan(x): | |
return None | |
# Special handling for model_input_messages and similar columns | |
if column_name in ['model_input_messages', 'model_output_message', 'tool_calls']: | |
if isinstance(x, (list, tuple, np.ndarray)): | |
# Convert each item in the array/list to string | |
return str([str(item) if not is_none_or_nan(item) else None for item in x]) | |
if isinstance(x, dict): | |
return str(x) | |
if hasattr(x, 'dict'): | |
return str(x.dict()) | |
if hasattr(x, '__dict__'): | |
return str(x.__dict__) | |
return str(x) | |
# For other columns, convert to string | |
if isinstance(x, (list, tuple, np.ndarray)): | |
return str(x.tolist() if hasattr(x, 'tolist') else list(x)) | |
if isinstance(x, dict): | |
return str(x) | |
if hasattr(x, 'dict'): | |
return str(x.dict()) | |
if hasattr(x, '__dict__'): | |
return str(x.__dict__) | |
return str(x) | |
except Exception as e: | |
print(f"Warning: Error converting value in column {column_name}: {str(e)}") | |
return str(x) if not is_none_or_nan(x) else None | |
# Convert all columns to consistent types | |
for col in df_to_save.columns: | |
print(f"Converting column: {col}") | |
try: | |
# Handle numpy arrays and pandas series | |
if isinstance(df_to_save[col], (np.ndarray, pd.Series)): | |
# Convert None/NaN to None, everything else to string | |
df_to_save[col] = df_to_save[col].apply(lambda x: None if is_none_or_nan(x) else str(x)) | |
else: | |
df_to_save[col] = df_to_save[col].apply(lambda x: ensure_consistent_type(x, col)) | |
# Verify column type consistency | |
sample_values = df_to_save[col].dropna().head() | |
if not sample_values.empty: | |
print(f"Sample values for {col}: {sample_values.iloc[0]}") | |
except Exception as e: | |
print(f"Warning: Error processing column {col}: {str(e)}") | |
# If there's an error, try to convert the entire column to string | |
df_to_save[col] = df_to_save[col].apply(lambda x: None if is_none_or_nan(x) else str(x)) | |
# Convert to dataset | |
dataset = datasets.Dataset.from_pandas(df_to_save) | |
# Add metadata with explicit string types for all columns | |
dataset.info.description = "Agent steps data from evaluation run" | |
# Save to hub with token | |
dataset.push_to_hub( | |
dataset_name, | |
private=True, | |
token=os.getenv("HUGGINGFACE_WRITE_API_KEY") | |
) | |
return True, f"Successfully saved {len(df_to_save)} steps to {dataset_name}" | |
except Exception as e: | |
error_msg = f"Error saving dataset: {str(e)}" | |
print(error_msg) | |
# Print more detailed error information | |
if hasattr(e, '__cause__') and e.__cause__: | |
print(f"Caused by: {str(e.__cause__)}") | |
return False, error_msg | |
def run_and_submit_all( profile: gr.OAuthProfile | None, mock_submission: bool = False): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
df_agent_steps = pd.DataFrame(columns=columns) | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
file_path = get_full_file_path(task_id) | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
if "youtube" in question_text.lower() and "bird" in question_text.lower(): | |
continue | |
try: | |
if file_path: | |
question_text = question_text + f"\n\nHere is also the path to the file for the task (file name matches with task ID and is not in plain English): {file_path}" | |
submitted_answer, df_agent_steps = agent(question_text, task_id, df_agent_steps) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Save steps data to huggingface dataset | |
print("\nSaving agent steps to Hugging Face dataset...") | |
success, message = save_dataset_to_hub(df_agent_steps, "huytofu92/agent_steps_huggingface_course_unit4") | |
if success: | |
print(message) | |
else: | |
print(f"⚠️ {message}") | |
print("Continuing with submission despite dataset save failure...") | |
# 6. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
if mock_submission: | |
answer_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"]) | |
answer_df.to_csv("answers.csv", index=False) | |
return "Answers saved to answers.csv", answer_df | |
else: | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"]) | |
print(results_df[["Task ID", "Submitted Answer"]].head(20)) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"]) | |
print(results_df[["Task ID", "Submitted Answer"]].head(20)) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"]) | |
print(results_df[["Task ID", "Submitted Answer"]].head(20)) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"]) | |
print(results_df[["Task ID", "Submitted Answer"]].head(20)) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"]) | |
print(results_df[["Task ID", "Submitted Answer"]].head(20)) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |