Spaces:
Paused
Paused
File size: 22,631 Bytes
ba72f62 10d2e39 ba72f62 10d2e39 ba72f62 e3fc741 9a7d4db 10d2e39 d8529bc d8acd61 504df0f d8acd61 504df0f 5d095b2 2445440 5d095b2 ce04e48 d8529bc d8acd61 671ea59 68d1258 e3fc741 671ea59 10d2e39 27994de e3fc741 3c4bd31 da815dd e3fc741 d8acd61 22b00f2 d8d1294 22b00f2 e3fc741 d8acd61 5d095b2 d8acd61 5d095b2 d8acd61 5d095b2 22b00f2 504df0f d8acd61 504df0f 2ae57cb 2445440 2ae57cb 27994de 2445440 27994de 2445440 2ae57cb 2445440 27994de 504df0f 2ae57cb 2445440 27994de 504df0f 2445440 504df0f 2445440 504df0f 2445440 2ae57cb 22b00f2 2ae57cb d8529bc 504df0f d8acd61 2445440 d8acd61 2445440 d8acd61 2445440 d8acd61 2ae57cb d8acd61 504df0f 2ae57cb 22b00f2 2ae57cb 22b00f2 2ae57cb 504df0f ce04e48 504df0f d8acd61 22b00f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
import os
import sys
# Hugging Face safe cache
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface/hub"
# Force Flask instance path to a writable temporary folder
safe_instance_path = "/tmp/flask_instance"
# Create the safe instance path after imports
os.makedirs(safe_instance_path, exist_ok=True)
from flask import Flask, render_template, redirect, url_for, flash, request, jsonify
from flask_login import LoginManager, login_required, current_user
from werkzeug.utils import secure_filename
import sys
import json
from datetime import datetime
# Adjust sys.path for import flexibility
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
# Import and initialize DB
from backend.models.database import db, Job, Application, init_db
from backend.models.user import User
from backend.routes.auth import auth_bp, handle_resume_upload
from backend.routes.interview_api import interview_api
# Import additional utilities
import re
import json
# -----------------------------------------------------------------------------
# Chatbot setup
#
# The chatbot feature uses a local vector database (Chroma) to search the
# ``chatbot/chatbot.txt`` knowledge base and then calls the Groq API via the
# OpenAI client. To avoid the expensive model and database initialisation on
# every request, we lazily load the embeddings and collection the first time
# a chat query is processed. Subsequent requests reuse the same global
# objects. See ``init_chatbot()`` and ``get_chatbot_response()`` below for
# implementation details.
# Paths for the chatbot knowledge base and persistent vector store. We
# compute these relative to the current file so that the app can be deployed
# anywhere without needing to change configuration. The ``chroma_db``
# directory will be created automatically by the Chroma client if it does not
# exist.
CHATBOT_TXT_PATH = os.path.join(current_dir, 'chatbot', 'chatbot.txt')
CHATBOT_DB_DIR = os.path.join(current_dir, 'chatbot', 'chroma_db')
# API credentials for Groq. These values mirror those in the standalone
# ``chatbot/chatbot.py`` script. If you need to update your API key or
# model name, modify these constants. The API key is public in this
# repository purely for demonstration purposes; in a real deployment it
# should be stored securely (e.g. via environment variables or Secrets).
GROQ_API_KEY = "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"
GROQ_MODEL = "llama3-8b-8192"
# Global objects used by the chatbot. They remain ``None`` until
# ``init_chatbot()`` runs. After initialisation, ``_chatbot_embedder`` holds
# the SentenceTransformer model and ``_chatbot_collection`` is the Chroma
# collection with embedded knowledge base documents. A separate import of
# the OpenAI client is performed in ``get_chatbot_response()`` to avoid
# unintentional import side effects at module import time.
_chatbot_embedder = None
_chatbot_collection = None
def init_chatbot() -> None:
"""Initialise the chatbot embedding model and vector database.
This function is designed to be idempotent: it only performs the heavy
initialisation steps once. Subsequent calls will return immediately if
the global variables are already populated. The knowledge base is read
from ``CHATBOT_TXT_PATH``, split into overlapping chunks and encoded
using a lightweight sentence transformer. The resulting embeddings are
stored in a Chroma collection located at ``CHATBOT_DB_DIR``. We set
``anonymized_telemetry=False`` to prevent any external network calls from
the Chroma client.
"""
global _chatbot_embedder, _chatbot_collection
if _chatbot_embedder is not None and _chatbot_collection is not None:
return
# Perform imports locally to avoid slowing down application startup. These
# libraries are heavy and only needed when the chatbot is used.
from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
import chromadb
from chromadb.config import Settings
# Ensure the persist directory exists. Chroma will create it if missing,
# but explicitly creating it avoids permission errors on some platforms.
os.makedirs(CHATBOT_DB_DIR, exist_ok=True)
# Read the raw FAQ text and split into overlapping chunks to improve
# retrieval granularity. The chunk size and overlap are tuned to
# accommodate the relatively small knowledge base.
with open(CHATBOT_TXT_PATH, encoding='utf-8') as f:
text = f.read()
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=100)
docs = [doc.strip() for doc in splitter.split_text(text)]
# Load the sentence transformer. This model is small and runs quickly on
# CPU. If you wish to change the model, update the name here.
embedder = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = embedder.encode(docs, show_progress_bar=False, batch_size=32)
# Initialise Chroma with an on‑disk persistent store. If the collection
# already exists and contains all documents, the add operation below will
# silently merge duplicates.
client = chromadb.Client(Settings(persist_directory=CHATBOT_DB_DIR, anonymized_telemetry=False))
collection = client.get_or_create_collection('chatbot')
ids = [f'doc_{i}' for i in range(len(docs))]
try:
# Attempt to query an existing document to see if the collection is
# populated. If this fails, we'll proceed to add all documents.
existing = collection.get(ids=ids[:1])
if not existing.get('documents'):
raise ValueError('No documents in collection')
except Exception:
collection.add(documents=docs, embeddings=embeddings, ids=ids)
_chatbot_embedder = embedder
_chatbot_collection = collection
def get_chatbot_response(query: str) -> str:
"""Generate a reply to the user's query using the knowledge base and Groq API.
The function first calls ``init_chatbot()`` to ensure that the embedding
model and Chroma collection are loaded. It then embeds the user's query
and retrieves the top three most relevant context chunks via a nearest
neighbour search. These chunks are concatenated and passed to the
Groq API via the OpenAI client. The system prompt constrains the model
to only answer questions about Codingo; for unrelated queries it will
politely decline to answer. Any exceptions during the API call are
propagated to the caller.
Parameters
----------
query: str
The user's input message.
Returns
-------
str
The assistant's reply.
"""
init_chatbot()
# Local imports to avoid pulling heavy dependencies on module import.
import openai
embedder = _chatbot_embedder
collection = _chatbot_collection
query_embedding = embedder.encode([query])[0]
results = collection.query(query_embeddings=[query_embedding], n_results=3)
retrieved_docs = results['documents'][0]
context = "\n".join(retrieved_docs)
system_prompt = (
"You are a helpful assistant for the Codingo website. "
"Only answer questions that are directly relevant to the context provided. "
"If the user asks anything unrelated, politely refuse by saying: "
"\"I'm only trained to answer questions about the Codingo platform.\""
)
user_prompt = f"Context:\n{context}\n\nQuestion: {query}"
# Configure the OpenAI client to talk to the Groq API. The base URL is
# set here rather than globally to avoid interfering with other parts of
# the application that might use OpenAI for different providers.
openai.api_key = GROQ_API_KEY
openai.api_base = "https://api.groq.com/openai/v1"
completion = openai.ChatCompletion.create(
model=GROQ_MODEL,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
max_tokens=200,
temperature=0.3,
)
return completion['choices'][0]['message']['content'].strip()
# Initialize Flask app
app = Flask(
__name__,
static_folder='backend/static',
static_url_path='/static',
template_folder='backend/templates',
instance_path=safe_instance_path # ✅ points to writable '/tmp/flask_instance'
)
app.config['SECRET_KEY'] = 'saadi'
# -----------------------------------------------------------------------------
# Cookie configuration for Hugging Face Spaces
#
# When running this app inside an iframe (as is typical on Hugging Face Spaces),
# browsers will drop cookies that have the default SameSite policy of ``Lax``.
# This prevents the Flask session cookie from being stored and means that
# ``login_user()`` will appear to have no effect – the user will be redirected
# back to the home page but remain anonymous. By explicitly setting the
# SameSite policy to ``None`` and enabling the ``Secure`` flag, we allow the
# session and remember cookies to be sent even when the app is embedded in an
# iframe. Without these settings the sign‑up and login flows work locally
# but silently fail in Spaces, causing the "redirect to home page without
# anything" behaviour reported by users.
app.config['SESSION_COOKIE_SAMESITE'] = 'None'
app.config['SESSION_COOKIE_SECURE'] = True
app.config['REMEMBER_COOKIE_SAMESITE'] = 'None'
app.config['REMEMBER_COOKIE_SECURE'] = True
# Configure the database connection
# Use /tmp directory for database in Hugging Face Spaces
# Note: Data will be lost when the space restarts
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/codingo.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
from flask_wtf.csrf import CSRFProtect
# csrf = CSRFProtect(app)
# Create necessary directories in writable locations
os.makedirs('/tmp/static/audio', exist_ok=True)
os.makedirs('/tmp/temp', exist_ok=True)
# Initialize DB with app
init_db(app)
# Flask-Login setup
login_manager = LoginManager()
login_manager.login_view = 'auth.login'
login_manager.init_app(app)
@login_manager.user_loader
def load_user(user_id):
return db.session.get(User, int(user_id))
# Register blueprints
app.register_blueprint(auth_bp)
app.register_blueprint(interview_api, url_prefix="/api")
# Routes (keep your existing routes)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/jobs')
def jobs():
all_jobs = Job.query.order_by(Job.date_posted.desc()).all()
return render_template('jobs.html', jobs=all_jobs)
@app.route('/job/<int:job_id>')
def job_detail(job_id):
job = Job.query.get_or_404(job_id)
return render_template('job_detail.html', job=job)
@app.route('/apply/<int:job_id>', methods=['GET', 'POST'])
@login_required
def apply(job_id):
job = Job.query.get_or_404(job_id)
if request.method == 'POST':
# Retrieve the uploaded resume file from the request. The ``name``
# attribute in the HTML form is ``resume``.
file = request.files.get('resume')
# Use our safe upload helper to store the resume. ``filepath``
# contains the location where the file was saved so that recruiters
# can download it later. Resume parsing has been disabled, so
# ``features`` will always be an empty dictionary.
features, error, filepath = handle_resume_upload(file)
# If there was an error saving the resume, notify the user. We no
# longer attempt to parse the resume contents, so the manual fields
# collected below will form the entire feature set.
if error:
flash("Resume upload failed. Please try again.", "danger")
return render_template('apply.html', job=job)
# Collect the manually entered fields for skills, experience and education.
# Users can separate entries with commas, semicolons or newlines; we
# normalise the input into lists of trimmed strings.
def parse_entries(raw_value: str):
import re
entries = []
if raw_value:
# Split on commas, semicolons or newlines
for item in re.split(r'[\n,;]+', raw_value):
item = item.strip()
if item:
entries.append(item)
return entries
skills_input = request.form.get('skills', '')
experience_input = request.form.get('experience', '')
education_input = request.form.get('education', '')
manual_features = {
"skills": parse_entries(skills_input),
"experience": parse_entries(experience_input),
"education": parse_entries(education_input)
}
# Prepare the application record. We ignore the empty ``features``
# returned by ``handle_resume_upload`` and instead persist the
# manually collected attributes. The extracted_features column
# expects a JSON string; json.dumps handles proper serialization.
application = Application(
job_id=job_id,
user_id=current_user.id,
name=current_user.username,
email=current_user.email,
resume_path=filepath,
extracted_features=json.dumps(manual_features)
)
db.session.add(application)
db.session.commit()
flash('Your application has been submitted successfully!', 'success')
return redirect(url_for('jobs'))
return render_template('apply.html', job=job)
@app.route('/my_applications')
@login_required
def my_applications():
applications = Application.query.filter_by(
user_id=current_user.id
).order_by(Application.date_applied.desc()).all()
return render_template('my_applications.html', applications=applications)
# -----------------------------------------------------------------------------
# Chatbot API endpoint
#
# This route receives a JSON payload containing a ``message`` field from the
# front‑end chat widget. It validates the input, invokes the chatbot
# response function and returns a JSON response. Any errors are surfaced
# as a 400 or 500 response with an ``error`` message field.
@app.route('/chatbot', methods=['POST'])
def chatbot_endpoint():
data = request.get_json(silent=True) or {}
user_input = str(data.get('message', '')).strip()
if not user_input:
return jsonify({"error": "Empty message"}), 400
try:
reply = get_chatbot_response(user_input)
return jsonify({"response": reply})
except Exception as exc:
# Log the exception to stderr for debugging in the console. In a
# production setting you might want to log this to a proper logging
# facility instead.
print(f"Chatbot error: {exc}", file=sys.stderr)
return jsonify({"error": str(exc)}), 500
@app.route('/parse_resume', methods=['POST'])
def parse_resume():
file = request.files.get('resume')
features, error, filepath = handle_resume_upload(file)
# If the upload failed, return an error. Parsing is no longer
# supported, so we do not attempt to inspect the resume contents.
if error:
return {"error": "Error processing resume. Please try again."}, 400
# If no features were extracted (the normal case now), respond with
# empty fields rather than an error. This preserves the API
# contract expected by any front‑end code that might call this
# endpoint.
if not features:
return {
"name": "",
"email": "",
"mobile_number": "",
"skills": [],
"experience": [],
"education": [],
"summary": ""
}, 200
# Should features contain values (unlikely in the new implementation),
# pass them through to the client.
response = {
"name": features.get('name', ''),
"email": features.get('email', ''),
"mobile_number": features.get('mobile_number', ''),
"skills": features.get('skills', []),
"experience": features.get('experience', []),
"education": features.get('education', []),
"summary": features.get('summary', '')
}
return response, 200
@app.route("/interview/<int:job_id>")
@login_required
def interview_page(job_id):
job = Job.query.get_or_404(job_id)
application = Application.query.filter_by(
user_id=current_user.id,
job_id=job_id
).first()
if not application or not application.extracted_features:
flash("Please apply for this job and upload your resume first.", "warning")
return redirect(url_for('job_detail', job_id=job_id))
cv_data = json.loads(application.extracted_features)
return render_template("interview.html", job=job, cv=cv_data)
# -----------------------------------------------------------------------------
# Recruiter job posting route
#
# Authenticated users with a recruiter or admin role can access this page to
# create new job listings. Posted jobs are associated with the current
# recruiter via the ``recruiter_id`` foreign key on the ``Job`` model.
@app.route('/post_job', methods=['GET', 'POST'])
@login_required
def post_job():
# Only allow recruiters and admins to post jobs
if current_user.role not in ('recruiter', 'admin'):
flash('You do not have permission to post jobs.', 'warning')
return redirect(url_for('jobs'))
if request.method == 'POST':
# Extract fields from the form
role_title = request.form.get('role', '').strip()
description = request.form.get('description', '').strip()
seniority = request.form.get('seniority', '').strip()
skills_input = request.form.get('skills', '').strip()
company = request.form.get('company', '').strip()
# Validate required fields
errors = []
if not role_title:
errors.append('Job title is required.')
if not description:
errors.append('Job description is required.')
if not seniority:
errors.append('Seniority level is required.')
if not skills_input:
errors.append('Skills are required.')
if not company:
errors.append('Company name is required.')
if errors:
for err in errors:
flash(err, 'danger')
return render_template('post_job.html')
# Normalise the skills input into a JSON encoded list. Users can
# separate entries with commas, semicolons or newlines.
skills_list = [s.strip() for s in re.split(r'[\n,;]+', skills_input) if s.strip()]
skills_json = json.dumps(skills_list)
# Create and persist the new job
new_job = Job(
role=role_title,
description=description,
seniority=seniority,
skills=skills_json,
company=company,
recruiter_id=current_user.id
)
db.session.add(new_job)
db.session.commit()
flash('Job posted successfully!', 'success')
return redirect(url_for('jobs'))
# GET request returns the form
return render_template('post_job.html')
# -----------------------------------------------------------------------------
# Recruiter dashboard route
#
# Displays a list of candidates who applied to jobs posted by the current
# recruiter. Candidates are sorted by a simple skill match score computed
# against the job requirements. A placeholder download button is provided
# for future PDF report functionality.
@app.route('/dashboard')
@login_required
def dashboard():
# Only recruiters and admins can view the dashboard
if current_user.role not in ('recruiter', 'admin'):
flash('You do not have permission to access the dashboard.', 'warning')
return redirect(url_for('index'))
# Fetch jobs posted by the current recruiter
posted_jobs = Job.query.filter_by(recruiter_id=current_user.id).all()
job_ids = [job.id for job in posted_jobs]
candidates_with_scores = []
if job_ids:
# Fetch applications associated with these job IDs
candidate_apps = Application.query.filter(Application.job_id.in_(job_ids)).all()
# Helper to compute a match score based on skills overlap
def compute_score(application):
try:
# Extract candidate skills from stored JSON
candidate_features = json.loads(application.extracted_features) if application.extracted_features else {}
candidate_skills = candidate_features.get('skills', [])
# Retrieve the job's required skills and parse from JSON
job_skills = json.loads(application.job.skills) if application.job and application.job.skills else []
if not job_skills:
return ('Medium', 2) # Default when job specifies no skills
# Compute case‑insensitive intersection
candidate_set = {s.lower() for s in candidate_skills}
job_set = {s.lower() for s in job_skills}
common = candidate_set & job_set
ratio = len(common) / len(job_set) if job_set else 0
# Map ratio to qualitative score
if ratio >= 0.75:
return ('Excellent', 4)
elif ratio >= 0.5:
return ('Good', 3)
elif ratio >= 0.25:
return ('Medium', 2)
else:
return ('Poor', 1)
except Exception:
return ('Medium', 2)
# Build a list of candidate applications with computed scores
for app_record in candidate_apps:
score_label, score_value = compute_score(app_record)
candidates_with_scores.append({
'application': app_record,
'score_label': score_label,
'score_value': score_value
})
# Sort candidates from highest to lowest score
candidates_with_scores.sort(key=lambda item: item['score_value'], reverse=True)
return render_template('dashboard.html', candidates=candidates_with_scores)
if __name__ == '__main__':
print("Starting Codingo application...")
with app.app_context():
db.create_all()
# Use port from environment or default to 7860
port = int(os.environ.get('PORT', 7860))
app.run(debug=True, host='0.0.0.0', port=port) |