Spaces:
Build error
Build error
File size: 6,351 Bytes
b9288df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Bottleneck ResNet v2 with GroupNorm and Weight Standardization."""
import math
from os.path import join as pjoin
from collections import OrderedDict # pylint: disable=g-importing-member
import torch
import torch.nn as nn
import torch.nn.functional as F
def np2th(weights, conv=False):
"""Possibly convert HWIO to OIHW."""
if conv:
weights = weights.transpose([3, 2, 0, 1])
return torch.from_numpy(weights)
class StdConv2d(nn.Conv2d):
def forward(self, x):
w = self.weight
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
w = (w - m) / torch.sqrt(v + 1e-5)
return F.conv2d(x, w, self.bias, self.stride, self.padding,
self.dilation, self.groups)
def conv3x3(cin, cout, stride=1, groups=1, bias=False):
return StdConv2d(cin, cout, kernel_size=3, stride=stride,
padding=1, bias=bias, groups=groups)
def conv1x1(cin, cout, stride=1, bias=False):
return StdConv2d(cin, cout, kernel_size=1, stride=stride,
padding=0, bias=bias)
class PreActBottleneck(nn.Module):
"""Pre-activation (v2) bottleneck block.
"""
def __init__(self, cin, cout=None, cmid=None, stride=1):
super().__init__()
cout = cout or cin
cmid = cmid or cout//4
self.gn1 = nn.GroupNorm(32, cmid, eps=1e-6)
self.conv1 = conv1x1(cin, cmid, bias=False)
self.gn2 = nn.GroupNorm(32, cmid, eps=1e-6)
self.conv2 = conv3x3(cmid, cmid, stride, bias=False) # Original code has it on conv1!!
self.gn3 = nn.GroupNorm(32, cout, eps=1e-6)
self.conv3 = conv1x1(cmid, cout, bias=False)
self.relu = nn.ReLU(inplace=True)
if (stride != 1 or cin != cout):
# Projection also with pre-activation according to paper.
self.downsample = conv1x1(cin, cout, stride, bias=False)
self.gn_proj = nn.GroupNorm(cout, cout)
def forward(self, x):
# Residual branch
residual = x
if hasattr(self, 'downsample'):
residual = self.downsample(x)
residual = self.gn_proj(residual)
# Unit's branch
y = self.relu(self.gn1(self.conv1(x)))
y = self.relu(self.gn2(self.conv2(y)))
y = self.gn3(self.conv3(y))
y = self.relu(residual + y)
return y
def load_from(self, weights, n_block, n_unit):
conv1_weight = np2th(weights[pjoin(n_block, n_unit, "conv1/kernel")], conv=True)
conv2_weight = np2th(weights[pjoin(n_block, n_unit, "conv2/kernel")], conv=True)
conv3_weight = np2th(weights[pjoin(n_block, n_unit, "conv3/kernel")], conv=True)
gn1_weight = np2th(weights[pjoin(n_block, n_unit, "gn1/scale")])
gn1_bias = np2th(weights[pjoin(n_block, n_unit, "gn1/bias")])
gn2_weight = np2th(weights[pjoin(n_block, n_unit, "gn2/scale")])
gn2_bias = np2th(weights[pjoin(n_block, n_unit, "gn2/bias")])
gn3_weight = np2th(weights[pjoin(n_block, n_unit, "gn3/scale")])
gn3_bias = np2th(weights[pjoin(n_block, n_unit, "gn3/bias")])
self.conv1.weight.copy_(conv1_weight)
self.conv2.weight.copy_(conv2_weight)
self.conv3.weight.copy_(conv3_weight)
self.gn1.weight.copy_(gn1_weight.view(-1))
self.gn1.bias.copy_(gn1_bias.view(-1))
self.gn2.weight.copy_(gn2_weight.view(-1))
self.gn2.bias.copy_(gn2_bias.view(-1))
self.gn3.weight.copy_(gn3_weight.view(-1))
self.gn3.bias.copy_(gn3_bias.view(-1))
if hasattr(self, 'downsample'):
proj_conv_weight = np2th(weights[pjoin(n_block, n_unit, "conv_proj/kernel")], conv=True)
proj_gn_weight = np2th(weights[pjoin(n_block, n_unit, "gn_proj/scale")])
proj_gn_bias = np2th(weights[pjoin(n_block, n_unit, "gn_proj/bias")])
self.downsample.weight.copy_(proj_conv_weight)
self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
self.gn_proj.bias.copy_(proj_gn_bias.view(-1))
class ResNetV2(nn.Module):
"""Implementation of Pre-activation (v2) ResNet mode."""
def __init__(self, block_units, width_factor):
super().__init__()
width = int(64 * width_factor)
self.width = width
# The following will be unreadable if we split lines.
# pylint: disable=line-too-long
self.root = nn.Sequential(OrderedDict([
('conv', StdConv2d(3, width, kernel_size=7, stride=2, bias=False, padding=3)),
('gn', nn.GroupNorm(32, width, eps=1e-6)),
('relu', nn.ReLU(inplace=True)),
('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))
]))
self.body = nn.Sequential(OrderedDict([
('block1', nn.Sequential(OrderedDict(
[('unit1', PreActBottleneck(cin=width, cout=width*4, cmid=width))] +
[(f'unit{i:d}', PreActBottleneck(cin=width*4, cout=width*4, cmid=width)) for i in range(2, block_units[0] + 1)],
))),
('block2', nn.Sequential(OrderedDict(
[('unit1', PreActBottleneck(cin=width*4, cout=width*8, cmid=width*2, stride=2))] +
[(f'unit{i:d}', PreActBottleneck(cin=width*8, cout=width*8, cmid=width*2)) for i in range(2, block_units[1] + 1)],
))),
('block3', nn.Sequential(OrderedDict(
[('unit1', PreActBottleneck(cin=width*8, cout=width*16, cmid=width*4, stride=2))] +
[(f'unit{i:d}', PreActBottleneck(cin=width*16, cout=width*16, cmid=width*4)) for i in range(2, block_units[2] + 1)],
))),
]))
def forward(self, x):
x = self.root(x)
x = self.body(x)
return x
|