File size: 6,351 Bytes
b9288df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Bottleneck ResNet v2 with GroupNorm and Weight Standardization."""
import math

from os.path import join as pjoin

from collections import OrderedDict  # pylint: disable=g-importing-member

import torch
import torch.nn as nn
import torch.nn.functional as F


def np2th(weights, conv=False):
    """Possibly convert HWIO to OIHW."""
    if conv:
        weights = weights.transpose([3, 2, 0, 1])
    return torch.from_numpy(weights)


class StdConv2d(nn.Conv2d):

    def forward(self, x):
        w = self.weight
        v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
        w = (w - m) / torch.sqrt(v + 1e-5)
        return F.conv2d(x, w, self.bias, self.stride, self.padding,
                        self.dilation, self.groups)


def conv3x3(cin, cout, stride=1, groups=1, bias=False):
    return StdConv2d(cin, cout, kernel_size=3, stride=stride,
                     padding=1, bias=bias, groups=groups)


def conv1x1(cin, cout, stride=1, bias=False):
    return StdConv2d(cin, cout, kernel_size=1, stride=stride,
                     padding=0, bias=bias)


class PreActBottleneck(nn.Module):
    """Pre-activation (v2) bottleneck block.
    """

    def __init__(self, cin, cout=None, cmid=None, stride=1):
        super().__init__()
        cout = cout or cin
        cmid = cmid or cout//4

        self.gn1 = nn.GroupNorm(32, cmid, eps=1e-6)
        self.conv1 = conv1x1(cin, cmid, bias=False)
        self.gn2 = nn.GroupNorm(32, cmid, eps=1e-6)
        self.conv2 = conv3x3(cmid, cmid, stride, bias=False)  # Original code has it on conv1!!
        self.gn3 = nn.GroupNorm(32, cout, eps=1e-6)
        self.conv3 = conv1x1(cmid, cout, bias=False)
        self.relu = nn.ReLU(inplace=True)

        if (stride != 1 or cin != cout):
            # Projection also with pre-activation according to paper.
            self.downsample = conv1x1(cin, cout, stride, bias=False)
            self.gn_proj = nn.GroupNorm(cout, cout)

    def forward(self, x):

        # Residual branch
        residual = x
        if hasattr(self, 'downsample'):
            residual = self.downsample(x)
            residual = self.gn_proj(residual)

        # Unit's branch
        y = self.relu(self.gn1(self.conv1(x)))
        y = self.relu(self.gn2(self.conv2(y)))
        y = self.gn3(self.conv3(y))

        y = self.relu(residual + y)
        return y

    def load_from(self, weights, n_block, n_unit):
        conv1_weight = np2th(weights[pjoin(n_block, n_unit, "conv1/kernel")], conv=True)
        conv2_weight = np2th(weights[pjoin(n_block, n_unit, "conv2/kernel")], conv=True)
        conv3_weight = np2th(weights[pjoin(n_block, n_unit, "conv3/kernel")], conv=True)

        gn1_weight = np2th(weights[pjoin(n_block, n_unit, "gn1/scale")])
        gn1_bias = np2th(weights[pjoin(n_block, n_unit, "gn1/bias")])

        gn2_weight = np2th(weights[pjoin(n_block, n_unit, "gn2/scale")])
        gn2_bias = np2th(weights[pjoin(n_block, n_unit, "gn2/bias")])

        gn3_weight = np2th(weights[pjoin(n_block, n_unit, "gn3/scale")])
        gn3_bias = np2th(weights[pjoin(n_block, n_unit, "gn3/bias")])

        self.conv1.weight.copy_(conv1_weight)
        self.conv2.weight.copy_(conv2_weight)
        self.conv3.weight.copy_(conv3_weight)

        self.gn1.weight.copy_(gn1_weight.view(-1))
        self.gn1.bias.copy_(gn1_bias.view(-1))

        self.gn2.weight.copy_(gn2_weight.view(-1))
        self.gn2.bias.copy_(gn2_bias.view(-1))

        self.gn3.weight.copy_(gn3_weight.view(-1))
        self.gn3.bias.copy_(gn3_bias.view(-1))

        if hasattr(self, 'downsample'):
            proj_conv_weight = np2th(weights[pjoin(n_block, n_unit, "conv_proj/kernel")], conv=True)
            proj_gn_weight = np2th(weights[pjoin(n_block, n_unit, "gn_proj/scale")])
            proj_gn_bias = np2th(weights[pjoin(n_block, n_unit, "gn_proj/bias")])

            self.downsample.weight.copy_(proj_conv_weight)
            self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
            self.gn_proj.bias.copy_(proj_gn_bias.view(-1))

class ResNetV2(nn.Module):
    """Implementation of Pre-activation (v2) ResNet mode."""

    def __init__(self, block_units, width_factor):
        super().__init__()
        width = int(64 * width_factor)
        self.width = width

        # The following will be unreadable if we split lines.
        # pylint: disable=line-too-long
        self.root = nn.Sequential(OrderedDict([
            ('conv', StdConv2d(3, width, kernel_size=7, stride=2, bias=False, padding=3)),
            ('gn', nn.GroupNorm(32, width, eps=1e-6)),
            ('relu', nn.ReLU(inplace=True)),
            ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))
        ]))

        self.body = nn.Sequential(OrderedDict([
            ('block1', nn.Sequential(OrderedDict(
                [('unit1', PreActBottleneck(cin=width, cout=width*4, cmid=width))] +
                [(f'unit{i:d}', PreActBottleneck(cin=width*4, cout=width*4, cmid=width)) for i in range(2, block_units[0] + 1)],
                ))),
            ('block2', nn.Sequential(OrderedDict(
                [('unit1', PreActBottleneck(cin=width*4, cout=width*8, cmid=width*2, stride=2))] +
                [(f'unit{i:d}', PreActBottleneck(cin=width*8, cout=width*8, cmid=width*2)) for i in range(2, block_units[1] + 1)],
                ))),    
            ('block3', nn.Sequential(OrderedDict(
                [('unit1', PreActBottleneck(cin=width*8, cout=width*16, cmid=width*4, stride=2))] +
                [(f'unit{i:d}', PreActBottleneck(cin=width*16, cout=width*16, cmid=width*4)) for i in range(2, block_units[2] + 1)],
                ))),
        ]))

    def forward(self, x):
        x = self.root(x)
        x = self.body(x)
        return x