File size: 8,327 Bytes
b9288df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import math
import torch
import warnings
import ml_collections
import random
import torch.nn.functional as F


def DiffAugment(x, types=[], prob = 0.5, detach=True):
    """
    x.shape = B, C, H, W
    """
    if random.random() < prob:
        with torch.set_grad_enabled(not detach):
            x = random_hflip(x, prob=0.5)
            for p in types:
                for f in AUGMENT_FNS[p]:
                    x = f(x)
            x = x.contiguous()
    return x


def random_hflip(tensor, prob):
    if prob > random.random():
        return tensor
    return torch.flip(tensor, dims=(3,))

def rand_brightness(x):
    x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
    return x

def rand_saturation(x):
    x_mean = x.mean(dim=1, keepdim=True)
    x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean
    return x

def rand_contrast(x):
    x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
    x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean
    return x

def rand_translation(x, ratio=0.125):
    shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
    translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
    translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
    grid_batch, grid_x, grid_y = torch.meshgrid(
        torch.arange(x.size(0), dtype=torch.long, device=x.device),
        torch.arange(x.size(2), dtype=torch.long, device=x.device),
        torch.arange(x.size(3), dtype=torch.long, device=x.device),
    )
    grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
    grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
    x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
    x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2)
    return x

def rand_offset(x, ratio=1, ratio_h=1, ratio_v=1):
    w, h = x.size(2), x.size(3)

    imgs = []
    for img in x.unbind(dim = 0):
        max_h = int(w * ratio * ratio_h)
        max_v = int(h * ratio * ratio_v)

        value_h = random.randint(0, max_h) * 2 - max_h
        value_v = random.randint(0, max_v) * 2 - max_v

        if abs(value_h) > 0:
            img = torch.roll(img, value_h, 2)

        if abs(value_v) > 0:
            img = torch.roll(img, value_v, 1)

        imgs.append(img)

    return torch.stack(imgs)

def rand_offset_h(x, ratio=1):
    return rand_offset(x, ratio=1, ratio_h=ratio, ratio_v=0)

def rand_offset_v(x, ratio=1):
    return rand_offset(x, ratio=1, ratio_h=0, ratio_v=ratio)

def rand_cutout(x, ratio=0.5):
    cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
    offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
    offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
    grid_batch, grid_x, grid_y = torch.meshgrid(
        torch.arange(x.size(0), dtype=torch.long, device=x.device),
        torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
        torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
    )
    grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
    grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
    mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
    mask[grid_batch, grid_x, grid_y] = 0
    x = x * mask.unsqueeze(1)
    return x


AUGMENT_FNS = {
    'color': [rand_brightness, rand_saturation, rand_contrast],
    'offset': [rand_offset],
    'offset_h': [rand_offset_h],
    'offset_v': [rand_offset_v],
    'translation': [rand_translation],
    'cutout': [rand_cutout],
}


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor, float, float, float, float) -> Tensor
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


def get_testing():
    """Returns a minimal configuration for testing."""
    config = ml_collections.ConfigDict()
    config.patches = ml_collections.ConfigDict({'size': (16, 16)})
    config.hidden_size = 1
    config.transformer = ml_collections.ConfigDict()
    config.transformer.mlp_dim = 1
    config.transformer.num_heads = 1
    config.transformer.num_layers = 1
    config.transformer.attention_dropout_rate = 0.0
    config.transformer.dropout_rate = 0.1
    config.classifier = 'token'
    config.representation_size = None
    return config


def get_b16_config():
    """Returns the ViT-B/16 configuration."""
    config = ml_collections.ConfigDict()
    config.patches = ml_collections.ConfigDict({'size': (16, 16)})
    config.hidden_size = 768
    config.transformer = ml_collections.ConfigDict()
    config.transformer.mlp_dim = 3072
    config.transformer.num_heads = 12
    config.transformer.num_layers = 12
    config.transformer.attention_dropout_rate = 0.0
    config.transformer.dropout_rate = 0.1
    config.classifier = 'token'
    config.representation_size = None
    return config


def get_r50_b16_config():
    """Returns the Resnet50 + ViT-B/16 configuration."""
    config = get_b16_config()
    del config.patches.size
    config.patches.grid = (14, 14)
    config.resnet = ml_collections.ConfigDict()
    config.resnet.num_layers = (3, 4, 9)
    config.resnet.width_factor = 1
    return config


def get_b32_config():
    """Returns the ViT-B/32 configuration."""
    config = get_b16_config()
    config.patches.size = (32, 32)
    return config


def get_l16_config():
    """Returns the ViT-L/16 configuration."""
    config = ml_collections.ConfigDict()
    config.patches = ml_collections.ConfigDict({'size': (16, 16)})
    config.hidden_size = 1024
    config.transformer = ml_collections.ConfigDict()
    config.transformer.mlp_dim = 4096
    config.transformer.num_heads = 16
    config.transformer.num_layers = 24
    config.transformer.attention_dropout_rate = 0.0
    config.transformer.dropout_rate = 0.1
    config.classifier = 'token'
    config.representation_size = None
    return config


def get_l32_config():
    """Returns the ViT-L/32 configuration."""
    config = get_l16_config()
    config.patches.size = (32, 32)
    return config


def get_h14_config():
    """Returns the ViT-L/16 configuration."""
    config = ml_collections.ConfigDict()
    config.patches = ml_collections.ConfigDict({'size': (14, 14)})
    config.hidden_size = 1280
    config.transformer = ml_collections.ConfigDict()
    config.transformer.mlp_dim = 5120
    config.transformer.num_heads = 16
    config.transformer.num_layers = 32
    config.transformer.attention_dropout_rate = 0.0
    config.transformer.dropout_rate = 0.1
    config.classifier = 'token'
    config.representation_size = None
    return config