File size: 4,084 Bytes
bd7e8e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import functools

import tensorflow as tf
from tensorflow.keras import layers

from .attentions import RCAB
from .misc_gating import CrossGatingBlock, ResidualSplitHeadMultiAxisGmlpLayer

Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same")
ConvT_up = functools.partial(
    layers.Conv2DTranspose, kernel_size=(2, 2), strides=(2, 2), padding="same"
)
Conv_down = functools.partial(
    layers.Conv2D, kernel_size=(4, 4), strides=(2, 2), padding="same"
)


def UNetEncoderBlock(
    num_channels: int,
    block_size,
    grid_size,
    num_groups: int = 1,
    lrelu_slope: float = 0.2,
    block_gmlp_factor: int = 2,
    grid_gmlp_factor: int = 2,
    input_proj_factor: int = 2,
    channels_reduction: int = 4,
    dropout_rate: float = 0.0,
    downsample: bool = True,
    use_global_mlp: bool = True,
    use_bias: bool = True,
    use_cross_gating: bool = False,
    name: str = "unet_encoder",
):
    """Encoder block in MAXIM."""

    def apply(x, skip=None, enc=None, dec=None):
        if skip is not None:
            x = tf.concat([x, skip], axis=-1)

        # convolution-in
        x = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x)
        shortcut_long = x

        for i in range(num_groups):
            if use_global_mlp:
                x = ResidualSplitHeadMultiAxisGmlpLayer(
                    grid_size=grid_size,
                    block_size=block_size,
                    grid_gmlp_factor=grid_gmlp_factor,
                    block_gmlp_factor=block_gmlp_factor,
                    input_proj_factor=input_proj_factor,
                    use_bias=use_bias,
                    dropout_rate=dropout_rate,
                    name=f"{name}_SplitHeadMultiAxisGmlpLayer_{i}",
                )(x)
            x = RCAB(
                num_channels=num_channels,
                reduction=channels_reduction,
                lrelu_slope=lrelu_slope,
                use_bias=use_bias,
                name=f"{name}_channel_attention_block_1{i}",
            )(x)

        x = x + shortcut_long

        if enc is not None and dec is not None:
            assert use_cross_gating
            x, _ = CrossGatingBlock(
                features=num_channels,
                block_size=block_size,
                grid_size=grid_size,
                dropout_rate=dropout_rate,
                input_proj_factor=input_proj_factor,
                upsample_y=False,
                use_bias=use_bias,
                name=f"{name}_cross_gating_block",
            )(x, enc + dec)

        if downsample:
            x_down = Conv_down(
                filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_1"
            )(x)
            return x_down, x
        else:
            return x

    return apply


def UNetDecoderBlock(
    num_channels: int,
    block_size,
    grid_size,
    num_groups: int = 1,
    lrelu_slope: float = 0.2,
    block_gmlp_factor: int = 2,
    grid_gmlp_factor: int = 2,
    input_proj_factor: int = 2,
    channels_reduction: int = 4,
    dropout_rate: float = 0.0,
    downsample: bool = True,
    use_global_mlp: bool = True,
    use_bias: bool = True,
    name: str = "unet_decoder",
):

    """Decoder block in MAXIM."""

    def apply(x, bridge=None):
        x = ConvT_up(
            filters=num_channels, use_bias=use_bias, name=f"{name}_ConvTranspose_0"
        )(x)
        x = UNetEncoderBlock(
            num_channels=num_channels,
            num_groups=num_groups,
            lrelu_slope=lrelu_slope,
            block_size=block_size,
            grid_size=grid_size,
            block_gmlp_factor=block_gmlp_factor,
            grid_gmlp_factor=grid_gmlp_factor,
            channels_reduction=channels_reduction,
            use_global_mlp=use_global_mlp,
            dropout_rate=dropout_rate,
            downsample=False,
            use_bias=use_bias,
            name=f"{name}_UNetEncoderBlock_0",
        )(x, skip=bridge)

        return x

    return apply