Spaces:
Sleeping
Sleeping
File size: 738 Bytes
c701626 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import pipeline
# Load the image classification model from Hugging Face
classifier = pipeline("image-classification", model="microsoft/resnet-50")
def classify_image(image):
# Perform image classification
results = classifier(image)
# Format the results
return {result["label"]: f"{result['score']:.4f}" for result in results}
# Create the Gradio interface
demo = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=5),
title="Image Classification with ResNet-50",
description="Upload an image to classify it into one of 1000 ImageNet categories."
)
# Launch the app
if __name__ == "__main__":
demo.launch()
|