File size: 3,275 Bytes
384400d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ce1a8
384400d
 
 
 
 
 
9165ea9
384400d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike

# Create an instance of CallbackManager
callback_manager = CallbackManager()

api_base_url =  "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiI1MDE5NTQyOSIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczMDIxOTcxMSwiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTU3NzExODg5NjciLCJ1dWlkIjoiOWM5ZDNkZWQtNDI3ZS00Nzk0LWFlMjYtYjQ5YTQ1Yjk5MDk0IiwiZW1haWwiOiIiLCJleHAiOjE3NDU3NzE3MTF9.Al9Sff9zh5KdUkjqtHyeqSWH0F_kVaV9C-TJJLzhc4LAtt_wULDpBYBnjjrIIjfQNJj3fvr-YnAFKq3d-NCBqg"

# api_base_url =  "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"

llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)



st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")

# 初始化模型
@st.cache_resource
def init_models():
    embed_model = HuggingFaceEmbedding(
        model_name="model/paraphrase-multilingual-MiniLM-L12-v2"
    )
    Settings.embed_model = embed_model

    #用初始化llm
    Settings.llm = llm

    documents = SimpleDirectoryReader("data").load_data()
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()

    return query_engine

# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
    st.session_state['query_engine'] = init_models()

def greet2(question):
    response = st.session_state['query_engine'].query(question)
    return response

      
# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]    

    # Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]

st.sidebar.button('Clear Chat History', on_click=clear_chat_history)

# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
    return greet2(prompt_input)

# User-provided prompt
if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llama_index_response(prompt)
            placeholder = st.empty()
            placeholder.markdown(response)
    message = {"role": "assistant", "content": response}
    st.session_state.messages.append(message)