Spaces:
Runtime error
Runtime error
File size: 1,285 Bytes
64db4c7 ff97a84 64db4c7 28bbb3d 64db4c7 28bbb3d ff97a84 64db4c7 ff97a84 64db4c7 28bbb3d ff97a84 64db4c7 28bbb3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import torch
from transformers import pipeline
import numpy as np
import time
pipe_base = pipeline("automatic-speech-recognition", model="aitor-medrano/lara-base-pushed")
pipe_small = pipeline("automatic-speech-recognition", model="aitor-medrano/whisper-small-lara")
pipe_base_2000 = pipeline("automatic-speech-recognition", model="aitor-medrano/whisper-base-lara-2000")
def greet(grabacion):
inicio = time.time()
sr, y = grabacion
# Pasamos el array de muestras a tipo NumPy de 32 bits
y = y.astype(np.float32)
y /= np.max(np.abs(y))
result_base = "base:" + pipe_base({"sampling_rate": sr, "raw": y})["text"]
result_small = "small:" + pipe_small({"sampling_rate": sr, "raw": y})["text"]
result_base_2000 = "base_2000:" + pipe_base_2000({"sampling_rate": sr, "raw": y})["text"]
fin = time.time()
return result_base, result_small, result_base_2000, fin - inicio
#return result_base, result_small, fin - inicio
demo = gr.Interface(fn=greet,
inputs=[
gr.Audio(),
],
outputs=[
gr.Text(label="Salida (Base)"),
gr.Text(label="Salida (Small)"),
gr.Text(label="Salida (Base 2000)"),
gr.Number(label="Tiempo")
])
demo.launch()
|