File size: 22,422 Bytes
982cb18 f6a6623 982cb18 f71c47a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
import os
# os.system('pip install bitsandbytes')
# os.system('pip install -q datasets loralib sentencepiece accelerate')
# os.system('pip install -q git+https://github.com/zphang/transformers@c3dc391')
# os.system('pip install -q git+https://github.com/huggingface/peft.git')
# os.system('pip install gradio')
os.system('pip install tenacity')
import re
import yaml
import gc
import copy
import time
from tenacity import RetryError
from tenacity import retry, stop_after_attempt, wait_fixed
import gradio as gr
import torch
from peft import PeftModel
from transformers import (
LLaMATokenizer,
LLaMAForCausalLM,
GenerationConfig,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
LogitsProcessorList,
MinNewTokensLengthLogitsProcessor,
TemperatureLogitsWarper,
TopPLogitsWarper,
MinLengthLogitsProcessor
)
assert torch.cuda.is_available(), "Change the runtime type to GPU"
# constants
num_of_characters_to_keep = 1000
# regex
html_tag_pattern = re.compile(r"<.*?>")
multi_line_pattern = re.compile(r"\n+")
multi_space_pattern = re.compile(r"( )")
multi_br_tag_pattern = re.compile(re.compile(r'<br>\s*(<br>\s*)*'))
# repl is short for replacement
repl_linebreak = "\n"
repl_empty_str = ""
TITLE = "🦌 Stambecco 🇮🇹"
ABSTRACT = """
Stambecco is a Italian Instruction-following model based on the [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model. It comes in two versions: 7b and 13b parameters. It is trained on an Italian version of the [GPT-4-LLM](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) dataset, a dataset of `GPT-4` generated instruction-following data.
This demo is intended to show and evaluate the conversational capabilities of the model.
For more information, please visit [the project's website](https://github.com/mchl-labs/stambecco).
NOTE: Too long input (context, instruction) will not be allowed. Please keep context < 500 and instruction < 150
"""
BOTTOM_LINE = """
By default, this demo runs with streaming mode, but you can also run with dynamic batch generation model.
Stambecco is built on the same concept as Standford Alpaca project, but using LoRA it lets us train and inference on a smaller GPUs such as RTX4090 for 7B version. Also, we could build very small size of checkpoints on top of base models thanks to [🤗 transformers](https://huggingface.co/docs/transformers/index), [🤗 peft](https://github.com/huggingface/peft), and [bitsandbytes](https://github.com/TimDettmers/bitsandbytes/tree/main) libraries.
This demo currently runs 8Bit 7b version of the model.
"""
DEFAULT_EXAMPLES = {
"Typical Questions": [
{
"title": "Parlami di Giulio Cesare.",
"examples": [
["1", "Scrivi un articolo su Giulio Cesare"],
["2", "Davvero?"],
["3", "Quanto era ricco Giulio Cesare?"],
["4", "Chi è stato il suo successore?"],
]
},
{
"title": "Parigi",
"examples": [
["1", "Scrivi un tema sulla città di Parigi"],
["2", "Fai un elenco di 5 posti da visitare assolutamente"],
["3", "Quali eventi importanti della Storia sono avvenuti a Parigi?"],
["4", "Quale è il periodo migliore per visitare Parigi?"],
]
},
{
"title": "Scrivi un programma in Python che stampi i primi 10 numeri di Fibonacci",
"examples": [
["1", "Scrivi un programma in Python che stampi i primi 10 numeri di Fibonacci"],
["2", "Potresti spiegarmi come funziona il codice?"],
["3", "Cos'è la ricorsione?"],
]
}
],
}
SPECIAL_STRS = {
"continue": "continua",
"summarize": "Di cosa abbiamo discusso finora? Descrivi nella user's view."
}
PARENT_BLOCK_CSS = """
#col_container {
width: 95%;
margin-left: auto;
margin-right: auto;
}
#chatbot {
height: 500px;
overflow: auto;
}
"""
def load_model(
base="decapoda-research/llama-7b-hf",
finetuned="mchl-labs/stambecco-7b-plus",
):
tokenizer = LLaMATokenizer.from_pretrained(base)
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left"
model = LLaMAForCausalLM.from_pretrained(
base,
load_in_8bit=True,
device_map="auto",
)
# model = PeftModel.from_pretrained(model, finetuned, device_map={'': 0})
model = PeftModel.from_pretrained(model, finetuned)
return model, tokenizer
def get_generation_config(path):
with open(path, 'rb') as f:
generation_config = yaml.safe_load(f.read())
return GenerationConfig(**generation_config["generation_config"])
def generate_prompt(prompt, histories, ctx=None, partial=False):
convs = f"""Di seguito è riportata una cronologia delle istruzioni che descrivono le tasks, abbinate a un input che fornisce ulteriore contesto. Scrivi una risposta che completi adeguatamente la richiesta ricordando la cronologia della conversazione.
"""
if ctx is not None:
convs = f"""### Input: {ctx}
"""
sub_convs = ""
start_idx = 0
for idx, history in enumerate(histories):
history_prompt = history[0]
history_response = history[1]
if history_response == "✅ Riepilogo della conversazione effettuato e impostato come contesto" or history_prompt == SPECIAL_STRS["summarize"]:
start_idx = idx
# drop the previous conversations if user has summarized
for history in histories[start_idx if start_idx == 0 else start_idx+1:]:
history_prompt = history[0]
history_response = history[1]
history_response = history_response.replace("<br>", "\n")
history_response = re.sub(
html_tag_pattern, repl_empty_str, history_response
)
sub_convs = sub_convs + f"""### Istruzione: {history_prompt}
### Risposta: {history_response}
"""
sub_convs = sub_convs + f"""### Istruzione: {prompt}
### Risposta:"""
convs = convs + sub_convs
return sub_convs if partial else convs, len(sub_convs)
def common_post_process(original_str):
original_str = re.sub(
multi_line_pattern, repl_linebreak, original_str
)
return original_str
def post_process_stream(bot_response):
# sometimes model spits out text containing
# "### Risposta:" and "### Istruzione: -> in this case, we want to stop generating
if "### Risposta:" in bot_response or "### Input:" in bot_response:
bot_response = bot_response.replace("### Risposta:", '').replace("### Input:", '').strip()
return bot_response, True
return common_post_process(bot_response), False
def post_process_batch(bot_response):
bot_response = bot_response.split("### Risposta:")[-1].strip()
return common_post_process(bot_response)
def post_processes_batch(bot_responses):
return [post_process_batch(r) for r in bot_responses]
def get_output_batch(
model, tokenizer, prompts, generation_config
):
if len(prompts) == 1:
encoding = tokenizer(prompts, return_tensors="pt")
input_ids = encoding["input_ids"].cuda()
generated_id = model.generate(
input_ids=input_ids,
generation_config=generation_config,
max_new_tokens=256
)
decoded = tokenizer.batch_decode(generated_id)
del input_ids, generated_id
torch.cuda.empty_cache()
return decoded
else:
encodings = tokenizer(prompts, padding=True, return_tensors="pt").to('cuda')
generated_ids = model.generate(
**encodings,
generation_config=generation_config,
max_new_tokens=256
)
decoded = tokenizer.batch_decode(generated_ids)
del encodings, generated_ids
torch.cuda.empty_cache()
return decoded
# StreamModel is borrowed from basaran project
# please find more info about it -> https://github.com/hyperonym/basaran
class StreamModel:
"""StreamModel wraps around a language model to provide stream decoding."""
def __init__(self, model, tokenizer):
super().__init__()
self.model = model
self.tokenizer = tokenizer
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.processor = LogitsProcessorList()
self.processor.append(TemperatureLogitsWarper(0.9))
self.processor.append(TopPLogitsWarper(0.75))
def __call__(
self,
prompt,
min_tokens=0,
max_tokens=16,
temperature=1.0,
top_p=1.0,
n=1,
logprobs=0,
):
"""Create a completion stream for the provided prompt."""
input_ids = self.tokenize(prompt)
logprobs = max(logprobs, 0)
# bigger than 1
chunk_size = 2
chunk_count = 0
# Generate completion tokens.
final_tokens = torch.empty(0)
for tokens in self.generate(
input_ids[None, :].repeat(n, 1),
logprobs=logprobs,
min_new_tokens=min_tokens,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
):
if chunk_count < chunk_size:
chunk_count = chunk_count + 1
final_tokens = torch.cat((final_tokens, tokens.to("cpu")))
if chunk_count == chunk_size-1:
chunk_count = 0
yield self.tokenizer.decode(final_tokens, skip_special_tokens=True)
if chunk_count > 0:
yield self.tokenizer.decode(final_tokens, skip_special_tokens=True)
del final_tokens, input_ids
if self.device == "cuda":
torch.cuda.empty_cache()
def _infer(self, model_fn, **kwargs):
with torch.inference_mode():
return model_fn(**kwargs)
def tokenize(self, text):
"""Tokenize a string into a tensor of token IDs."""
batch = self.tokenizer.encode(text, return_tensors="pt")
return batch[0].to(self.device)
def generate(self, input_ids, logprobs=0, **kwargs):
"""Generate a stream of predicted tokens using the language model."""
# Store the original batch size and input length.
batch_size = input_ids.shape[0]
input_length = input_ids.shape[-1]
# Separate model arguments from generation config.
config = self.model.generation_config
config = copy.deepcopy(config)
kwargs = config.update(**kwargs)
kwargs["output_attentions"] = False
kwargs["output_hidden_states"] = False
kwargs["use_cache"] = True
# Collect special token IDs.
pad_token_id = config.pad_token_id
bos_token_id = config.bos_token_id
eos_token_id = config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if pad_token_id is None and eos_token_id is not None:
pad_token_id = eos_token_id[0]
# Generate from eos if no input is specified.
if input_length == 0:
input_ids = input_ids.new_ones((batch_size, 1)).long()
if eos_token_id is not None:
input_ids = input_ids * eos_token_id[0]
input_length = 1
# Keep track of which sequences are already finished.
unfinished = input_ids.new_ones(batch_size)
# Start auto-regressive generation.
while True:
inputs = self.model.prepare_inputs_for_generation(
input_ids, **kwargs
) # noqa: E501
outputs = self._infer(
self.model,
**inputs,
# return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
# Pre-process the probability distribution of the next tokens.
logits = outputs.logits[:, -1, :]
with torch.inference_mode():
logits = self.processor(input_ids, logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
# Select deterministic or stochastic decoding strategy.
if (config.top_p is not None and config.top_p <= 0) or (
config.temperature is not None and config.temperature <= 0
):
tokens = torch.argmax(probs, dim=-1)[:, None]
else:
tokens = torch.multinomial(probs, num_samples=1)
tokens = tokens.squeeze(1)
# Finished sequences should have their next token be a padding.
if pad_token_id is not None:
tokens = tokens * unfinished + pad_token_id * (1 - unfinished)
# Append selected tokens to the inputs.
input_ids = torch.cat([input_ids, tokens[:, None]], dim=-1)
# Mark sequences with eos tokens as finished.
if eos_token_id is not None:
not_eos = sum(tokens != i for i in eos_token_id)
unfinished = unfinished.mul(not_eos.long())
# Set status to -1 if exceeded the max length.
status = unfinished.clone()
if input_ids.shape[-1] - input_length >= config.max_new_tokens:
status = 0 - status
# Yield predictions and status.
yield tokens
# Stop when finished or exceeded the max length.
if status.max() <= 0:
break
generation_config = get_generation_config(
"./generation_config_default.yaml"
)
model, tokenizer = load_model(
# base="decapoda-research/llama-13b-hf",
# finetuned="mchl-labs/stambecco-13b-plus",
)
stream_model = StreamModel(model, tokenizer)
def chat_stream(
context,
instruction,
state_chatbot,
):
if len(context) > 1000 or len(instruction) > 300:
raise gr.Error("Context or prompt is too long!")
bot_summarized_response = ''
# user input should be appropriately formatted (don't be confused by the function name)
instruction_display = instruction
instruction_prompt, conv_length = generate_prompt(instruction, state_chatbot, context)
if conv_length > num_of_characters_to_keep:
instruction_prompt = generate_prompt(SPECIAL_STRS["summarize"], state_chatbot, context, partial=True)[0]
state_chatbot = state_chatbot + [
(
None,
"![](https://s2.gifyu.com/images/icons8-loading-circle.gif) Conversazione troppo lunga, sto riassumendo..."
)
]
yield (state_chatbot, state_chatbot, context)
bot_summarized_response = get_output_batch(
model, tokenizer, [instruction_prompt], generation_config
)[0]
bot_summarized_response = bot_summarized_response.split("### Risposta:")[-1].strip()
state_chatbot[-1] = (
None,
"✅ Riepilogo della conversazione effettuato e impostato come contesto"
)
print(f"bot_summarized_response: {bot_summarized_response}")
yield (state_chatbot, state_chatbot, f"{context}. {bot_summarized_response}".strip())
instruction_prompt = generate_prompt(instruction, state_chatbot, f"{context} {bot_summarized_response}")[0]
bot_response = stream_model(
instruction_prompt,
max_tokens=256,
temperature=1,
top_p=0.9
)
instruction_display = None if instruction_display == SPECIAL_STRS["continue"] else instruction_display
state_chatbot = state_chatbot + [(instruction_display, None)]
yield (state_chatbot, state_chatbot, f"{context}. {bot_summarized_response}".strip())
prev_index = 0
agg_tokens = ""
cutoff_idx = 0
for tokens in bot_response:
tokens = tokens.strip()
cur_token = tokens[prev_index:]
if "#" in cur_token and agg_tokens == "":
cutoff_idx = tokens.find("#")
agg_tokens = tokens[cutoff_idx:]
if agg_tokens != "":
if len(agg_tokens) < len("### Istruzione:") :
agg_tokens = agg_tokens + cur_token
elif len(agg_tokens) >= len("### Istruzione:"):
if tokens.find("### Istruzione:") > -1:
processed_response, _ = post_process_stream(tokens[:tokens.find("### Istruzione:")].strip())
state_chatbot[-1] = (
instruction_display,
processed_response
)
yield (state_chatbot, state_chatbot, f"{context} {bot_summarized_response}".strip())
break
else:
agg_tokens = ""
cutoff_idx = 0
if agg_tokens == "":
processed_response, to_exit = post_process_stream(tokens)
state_chatbot[-1] = (instruction_display, processed_response)
yield (state_chatbot, state_chatbot, f"{context} {bot_summarized_response}".strip())
if to_exit:
break
prev_index = len(tokens)
yield (
state_chatbot,
state_chatbot,
f"{context} {bot_summarized_response}".strip()
)
def chat_batch(
contexts,
instructions,
state_chatbots,
):
state_results = []
ctx_results = []
instruct_prompts = [
generate_prompt(instruct, histories, ctx)
for ctx, instruct, histories in zip(contexts, instructions, state_chatbots)
]
bot_responses = get_output_batch(
model, tokenizer, instruct_prompts, generation_config
)
bot_responses = post_processes_batch(bot_responses)
for ctx, instruction, bot_response, state_chatbot in zip(contexts, instructions, bot_responses, state_chatbots):
new_state_chatbot = state_chatbot + [('' if instruction == SPECIAL_STRS["continue"] else instruction, bot_response)]
ctx_results.append(gr.Textbox.update(value=bot_response) if instruction == SPECIAL_STRS["summarize"] else ctx)
state_results.append(new_state_chatbot)
return (state_results, state_results, ctx_results)
def reset_textbox():
return gr.Textbox.update(value='')
def reset_everything(
context_txtbox,
instruction_txtbox,
state_chatbot):
state_chatbot = []
return (
state_chatbot,
state_chatbot,
gr.Textbox.update(value=''),
gr.Textbox.update(value=''),
)
with gr.Blocks(css=PARENT_BLOCK_CSS) as demo:
state_chatbot = gr.State([])
with gr.Column(elem_id='col_container'):
gr.Markdown(f"## {TITLE}\n\n\n{ABSTRACT}")
with gr.Accordion("Context Setting", open=False):
context_txtbox = gr.Textbox(placeholder="Surrounding information to AI", label="Enter Context")
hidden_txtbox = gr.Textbox(placeholder="", label="Order", visible=False)
chatbot = gr.Chatbot(elem_id='chatbot', label="Stambecco")
instruction_txtbox = gr.Textbox(placeholder="What do you want to say to AI?", label="Instruction")
with gr.Row():
cancel_btn = gr.Button(value="Cancel")
reset_btn = gr.Button(value="Reset")
with gr.Accordion("Helper Buttons", open=False):
gr.Markdown(f"`Continue` lets AI to complete the previous incomplete answers. `Summarize` lets AI to summarize the conversations so far.")
continue_txtbox = gr.Textbox(value=SPECIAL_STRS["continue"], visible=False)
summrize_txtbox = gr.Textbox(value=SPECIAL_STRS["summarize"], visible=False)
continue_btn = gr.Button(value="Continue")
summarize_btn = gr.Button(value="Summarize")
gr.Markdown("#### Examples")
for _, (category, examples) in enumerate(DEFAULT_EXAMPLES.items()):
with gr.Accordion(category, open=False):
if category == "Identity":
for item in examples:
with gr.Accordion(item["title"], open=False):
gr.Examples(
examples=item["examples"],
inputs=[
hidden_txtbox, context_txtbox, instruction_txtbox
],
label=None
)
else:
for item in examples:
with gr.Accordion(item["title"], open=False):
gr.Examples(
examples=item["examples"],
inputs=[
hidden_txtbox, instruction_txtbox
],
label=None
)
gr.Markdown(f"{BOTTOM_LINE}")
send_event = instruction_txtbox.submit(
chat_stream,
[context_txtbox, instruction_txtbox, state_chatbot],
[state_chatbot, chatbot, context_txtbox],
)
reset_event = instruction_txtbox.submit(
reset_textbox,
[],
[instruction_txtbox],
)
continue_event = continue_btn.click(
chat_stream,
[context_txtbox, continue_txtbox, state_chatbot],
[state_chatbot, chatbot, context_txtbox],
)
reset_continue_event = continue_btn.click(
reset_textbox,
[],
[instruction_txtbox],
)
summarize_event = summarize_btn.click(
chat_stream,
[context_txtbox, summrize_txtbox, state_chatbot],
[state_chatbot, chatbot, context_txtbox],
)
summarize_reset_event = summarize_btn.click(
reset_textbox,
[],
[instruction_txtbox],
)
cancel_btn.click(
None, None, None,
cancels=[
send_event, continue_event, summarize_event
]
)
reset_btn.click(
reset_everything,
[context_txtbox, instruction_txtbox, state_chatbot],
[state_chatbot, chatbot, context_txtbox, instruction_txtbox],
cancels=[
send_event, continue_event, summarize_event
]
)
demo.queue(
concurrency_count=1,
max_size=100,
).launch(
max_threads=5,
server_name="0.0.0.0",
share=True
) |