File size: 6,918 Bytes
0d694c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import logging
import json
import os
import datetime
import hashlib
import csv
import requests
import re
import html
import torch 
import sys
import gc
from pygments.lexers import guess_lexer, ClassNotFound
import gradio as gr
from pygments import highlight
from pygments.lexers import guess_lexer,get_lexer_by_name
from pygments.formatters import HtmlFormatter
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM


def reset_state():
    return [], [], "Reset Done"

def reset_textbox():
    return gr.update(value=""),""

def cancel_outputing():
    return "Stop Done"

def transfer_input(inputs):
    textbox = reset_textbox()
    return (
        inputs,
        gr.update(value=""),
        gr.Button.update(visible=True),
    )

def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
    for stop_word in stop_words:
        if s.endswith(stop_word):
            return True
        for i in range(1, len(stop_word)):
            if s.endswith(stop_word[:i]):
                return True
    return False

def generate_prompt_with_history(text, history, tokenizer, max_length=2048):
    prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"   
    history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0],x[1]) for x in history]
    history.append("\n[|Human|]{}\n[|AI|]".format(text))
    history_text = ""
    flag = False
    for x in history[::-1]:
        if tokenizer(prompt+history_text+x, return_tensors="pt")['input_ids'].size(-1) <= max_length:
            history_text = x + history_text
            flag = True
        else:
            break
    if flag:
        return  prompt+history_text,tokenizer(prompt+history_text, return_tensors="pt")
    else:
        return None



#tokenizer = AutoTokenizer.from_pretrained("project-baize/baize-v2-7b")
#model = AutoModelForCausalLM.from_pretrained("project-baize/baize-v2-7b")
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")


def load_tokenizer_and_model(base_model,load_8bit=False):
    if torch.cuda.is_available():
        device = "cuda"
    else:
        device = "cpu"

    tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast = False)
    if device == "cuda":
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            #load_in_8bit=load_8bit,
            #torch_dtype=torch.float16,
            device_map="auto",
        )
    else:
        model = AutoModelForCausalLM.from_pretrained(
            base_model, device_map={"": device}, low_cpu_mem_usage=True
        )

    #if not load_8bit:
        #model.half()  # seems to fix bugs for some users.

    model.eval()
    return tokenizer,model,device

# Greedy Search
def greedy_search(input_ids: torch.Tensor,
                  model: torch.nn.Module,
                  tokenizer: transformers.PreTrainedTokenizer,
                  stop_words: list,
                  max_length: int,
                  temperature: float = 1.0,
                  top_p: float = 1.0,
                  top_k: int = 25) -> Iterator[str]:
    generated_tokens = []
    past_key_values = None
    current_length = 1
    for i in range(max_length):
        with torch.no_grad():
            if past_key_values is None:
                outputs = model(input_ids)
            else:
                outputs = model(input_ids[:, -1:], past_key_values=past_key_values)
            logits = outputs.logits[:, -1, :]
            past_key_values = outputs.past_key_values

            # apply temperature
            logits /= temperature
    
            probs = torch.softmax(logits, dim=-1)
            # apply top_p
            probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
            probs_sum = torch.cumsum(probs_sort, dim=-1)
            mask = probs_sum - probs_sort > top_p
            probs_sort[mask] = 0.0
    
            # apply top_k
            #if top_k is not None:
            #    probs_sort1, _ = torch.topk(probs_sort, top_k)
            #    min_top_probs_sort = torch.min(probs_sort1, dim=-1, keepdim=True).values
            #    probs_sort = torch.where(probs_sort < min_top_probs_sort, torch.full_like(probs_sort, float(0.0)), probs_sort)
    
            probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
            next_token = torch.multinomial(probs_sort, num_samples=1)
            next_token = torch.gather(probs_idx, -1, next_token)
    
            input_ids = torch.cat((input_ids, next_token), dim=-1)
    
            generated_tokens.append(next_token[0].item())
            text = tokenizer.decode(generated_tokens)
    
            yield text
            if any([x in text for x in stop_words]):
                del past_key_values
                del logits
                del probs
                del probs_sort
                del probs_idx
                del probs_sum
                gc.collect()
                return 

def convert_to_markdown(text):
    text = text.replace("$","&#36;")
    def replace_leading_tabs_and_spaces(line):
        new_line = []
        
        for char in line:
            if char == "\t":
                new_line.append("&#9;")
            elif char == " ":
                new_line.append("&nbsp;")
            else:
                break
        return "".join(new_line) + line[len(new_line):]

    markdown_text = ""
    lines = text.split("\n")
    in_code_block = False

    for line in lines:
        if in_code_block is False and line.startswith("```"):
            in_code_block = True
            markdown_text += f"{line}\n"
        elif in_code_block is True and line.startswith("```"):
            in_code_block = False
            markdown_text += f"{line}\n"
        elif in_code_block:
            markdown_text += f"{line}\n"
        else:
            line = replace_leading_tabs_and_spaces(line)
            line = re.sub(r"^(#)", r"\\\1", line)
            markdown_text += f"{line}  \n"

    return markdown_text


class State:
    interrupted = False

    def interrupt(self):
        self.interrupted = True

    def recover(self):
        self.interrupted = False
shared_state = State()