File size: 13,806 Bytes
94753b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# 🤗 Hugging Face Inference Endpoints

A Typescript powered wrapper for the Hugging Face Inference Endpoints API. Learn more about Inference Endpoints at [Hugging Face](https://huggingface.co/inference-endpoints).
It works with both [Inference API (serverless)](https://huggingface.co/docs/api-inference/index) and [Inference Endpoints (dedicated)](https://huggingface.co/docs/inference-endpoints/index).

Check out the [full documentation](https://huggingface.co/docs/huggingface.js/inference/README).

You can also try out a live [interactive notebook](https://observablehq.com/@huggingface/hello-huggingface-js-inference), see some demos on [hf.co/huggingfacejs](https://huggingface.co/huggingfacejs), or watch a [Scrimba tutorial that explains how Inference Endpoints works](https://scrimba.com/scrim/cod8248f5adfd6e129582c523). 

## Getting Started

### Install

#### Node

```console
npm install @huggingface/inference

pnpm add @huggingface/inference

yarn add @huggingface/inference
```

#### Deno

```ts
// esm.sh
import { HfInference } from "https://esm.sh/@huggingface/inference"
// or npm:
import { HfInference } from "npm:@huggingface/inference"
```


### Initialize

```typescript
import { HfInference } from '@huggingface/inference'

const hf = new HfInference('your access token')
```**Important note:** Using an access token is optional to get started, however you will be rate limited eventually. Join [Hugging Face](https://huggingface.co/join) and then visit [access tokens](https://huggingface.co/settings/tokens) to generate your access token for **free**.

Your access token should be kept private. If you need to protect it in front-end applications, we suggest setting up a proxy server that stores the access token.


#### Tree-shaking

You can import the functions you need directly from the module instead of using the `HfInference` class.

```ts
import { textGeneration } from "@huggingface/inference";

await textGeneration({
  accessToken: "hf_...",
  model: "model_or_endpoint",
  inputs: ...,
  parameters: ...
})
```

This will enable tree-shaking by your bundler.

## Natural Language Processing

### Fill Mask

Tries to fill in a hole with a missing word (token to be precise).

```typescript
await hf.fillMask({
  model: 'bert-base-uncased',
  inputs: '[MASK] world!'
})
```

### Summarization

Summarizes longer text into shorter text. Be careful, some models have a maximum length of input.

```typescript
await hf.summarization({
  model: 'facebook/bart-large-cnn',
  inputs:
    'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930.',
  parameters: {
    max_length: 100
  }
})
```

### Question Answering

Answers questions based on the context you provide.

```typescript
await hf.questionAnswering({
  model: 'deepset/roberta-base-squad2',
  inputs: {
    question: 'What is the capital of France?',
    context: 'The capital of France is Paris.'
  }
})
```

### Table Question Answering

```typescript
await hf.tableQuestionAnswering({
  model: 'google/tapas-base-finetuned-wtq',
  inputs: {
    query: 'How many stars does the transformers repository have?',
    table: {
      Repository: ['Transformers', 'Datasets', 'Tokenizers'],
      Stars: ['36542', '4512', '3934'],
      Contributors: ['651', '77', '34'],
      'Programming language': ['Python', 'Python', 'Rust, Python and NodeJS']
    }
  }
})
```

### Text Classification

Often used for sentiment analysis, this method will assign labels to the given text along with a probability score of that label.

```typescript
await hf.textClassification({
  model: 'distilbert-base-uncased-finetuned-sst-2-english',
  inputs: 'I like you. I love you.'
})
```

### Text Generation

Generates text from an input prompt.

[Demo](https://huggingface.co/spaces/huggingfacejs/streaming-text-generation)

```typescript
await hf.textGeneration({
  model: 'gpt2',
  inputs: 'The answer to the universe is'
})

for await (const output of hf.textGenerationStream({
  model: "google/flan-t5-xxl",
  inputs: 'repeat "one two three four"',
  parameters: { max_new_tokens: 250 }
})) {
  console.log(output.token.text, output.generated_text);
}
```

### Token Classification

Used for sentence parsing, either grammatical, or Named Entity Recognition (NER) to understand keywords contained within text.

```typescript
await hf.tokenClassification({
  model: 'dbmdz/bert-large-cased-finetuned-conll03-english',
  inputs: 'My name is Sarah Jessica Parker but you can call me Jessica'
})
```

### Translation

Converts text from one language to another.

```typescript
await hf.translation({
  model: 't5-base',
  inputs: 'My name is Wolfgang and I live in Berlin'
})

await hf.translation({
  model: 'facebook/mbart-large-50-many-to-many-mmt',
  inputs: textToTranslate,
  parameters: {
		"src_lang": "en_XX",
		"tgt_lang": "fr_XX"
	}
})
```

### Zero-Shot Classification

Checks how well an input text fits into a set of labels you provide.

```typescript
await hf.zeroShotClassification({
  model: 'facebook/bart-large-mnli',
  inputs: [
    'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!'
  ],
  parameters: { candidate_labels: ['refund', 'legal', 'faq'] }
})
```

### Conversational

This task corresponds to any chatbot-like structure. Models tend to have shorter max_length, so please check with caution when using a given model if you need long-range dependency or not.

```typescript
await hf.conversational({
  model: 'microsoft/DialoGPT-large',
  inputs: {
    past_user_inputs: ['Which movie is the best ?'],
    generated_responses: ['It is Die Hard for sure.'],
    text: 'Can you explain why ?'
  }
})
```

### Sentence Similarity

Calculate the semantic similarity between one text and a list of other sentences.

```typescript
await hf.sentenceSimilarity({
  model: 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
  inputs: {
    source_sentence: 'That is a happy person',
    sentences: [
      'That is a happy dog',
      'That is a very happy person',
      'Today is a sunny day'
    ]
  }
})
```

## Audio

### Automatic Speech Recognition

Transcribes speech from an audio file.

[Demo](https://huggingface.co/spaces/huggingfacejs/speech-recognition-vue)

```typescript
await hf.automaticSpeechRecognition({
  model: 'facebook/wav2vec2-large-960h-lv60-self',
  data: readFileSync('test/sample1.flac')
})
```

### Audio Classification

Assigns labels to the given audio along with a probability score of that label.

[Demo](https://huggingface.co/spaces/huggingfacejs/audio-classification-vue)

```typescript
await hf.audioClassification({
  model: 'superb/hubert-large-superb-er',
  data: readFileSync('test/sample1.flac')
})
```

### Text To Speech

Generates natural-sounding speech from text input.

[Interactive tutorial](https://scrimba.com/scrim/co8da4d23b49b648f77f4848a?pl=pkVnrP7uP)

```typescript
await hf.textToSpeech({
  model: 'espnet/kan-bayashi_ljspeech_vits',
  inputs: 'Hello world!'
})
```

### Audio To Audio

Outputs one or multiple generated audios from an input audio, commonly used for speech enhancement and source separation.

```typescript
await hf.audioToAudio({
  model: 'speechbrain/sepformer-wham',
  data: readFileSync('test/sample1.flac')
})
```

## Computer Vision

### Image Classification

Assigns labels to a given image along with a probability score of that label.

[Demo](https://huggingface.co/spaces/huggingfacejs/image-classification-vue)

```typescript
await hf.imageClassification({
  data: readFileSync('test/cheetah.png'),
  model: 'google/vit-base-patch16-224'
})
```

### Object Detection

Detects objects within an image and returns labels with corresponding bounding boxes and probability scores.

[Demo](https://huggingface.co/spaces/huggingfacejs/object-detection-vue)

```typescript
await hf.objectDetection({
  data: readFileSync('test/cats.png'),
  model: 'facebook/detr-resnet-50'
})
```

### Image Segmentation

Detects segments within an image and returns labels with corresponding bounding boxes and probability scores.

```typescript
await hf.imageSegmentation({
  data: readFileSync('test/cats.png'),
  model: 'facebook/detr-resnet-50-panoptic'
})
```

### Image To Text

Outputs text from a given image, commonly used for captioning or optical character recognition.

```typescript
await hf.imageToText({
  data: readFileSync('test/cats.png'),
  model: 'nlpconnect/vit-gpt2-image-captioning'
})
```

### Text To Image

Creates an image from a text prompt.

[Demo](https://huggingface.co/spaces/huggingfacejs/image-to-text)

```typescript
await hf.textToImage({
  inputs: 'award winning high resolution photo of a giant tortoise/((ladybird)) hybrid, [trending on artstation]',
  model: 'stabilityai/stable-diffusion-2',
  parameters: {
    negative_prompt: 'blurry',
  }
})
```

### Image To Image

Image-to-image is the task of transforming a source image to match the characteristics of a target image or a target image domain.

[Interactive tutorial](https://scrimba.com/scrim/co4834bf9a91cc81cfab07969?pl=pkVnrP7uP)

```typescript
await hf.imageToImage({
  inputs: new Blob([readFileSync("test/stormtrooper_depth.png")]),
  parameters: {
    prompt: "elmo's lecture",
  },
  model: "lllyasviel/sd-controlnet-depth",
});
```

### Zero Shot Image Classification

Checks how well an input image fits into a set of labels you provide.

```typescript
await hf.zeroShotImageClassification({
  model: 'openai/clip-vit-large-patch14-336',
  inputs: {
    image: await (await fetch('https://placekitten.com/300/300')).blob()
  },  
  parameters: {
    candidate_labels: ['cat', 'dog']
  }
})
```

## Multimodal

### Feature Extraction

This task reads some text and outputs raw float values, that are usually consumed as part of a semantic database/semantic search.

```typescript
await hf.featureExtraction({
  model: "sentence-transformers/distilbert-base-nli-mean-tokens",
  inputs: "That is a happy person",
});
```

### Visual Question Answering

Visual Question Answering is the task of answering open-ended questions based on an image. They output natural language responses to natural language questions.

[Demo](https://huggingface.co/spaces/huggingfacejs/doc-vis-qa)

```typescript
await hf.visualQuestionAnswering({
  model: 'dandelin/vilt-b32-finetuned-vqa',
  inputs: {
    question: 'How many cats are lying down?',
    image: await (await fetch('https://placekitten.com/300/300')).blob()
  }
})
```

### Document Question Answering

Document question answering models take a (document, question) pair as input and return an answer in natural language.

[Demo](https://huggingface.co/spaces/huggingfacejs/doc-vis-qa)

```typescript
await hf.documentQuestionAnswering({
  model: 'impira/layoutlm-document-qa',
  inputs: {
    question: 'Invoice number?',
    image: await (await fetch('https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png')).blob(),
  }
})
```

## Tabular

### Tabular Regression

Tabular regression is the task of predicting a numerical value given a set of attributes.

```typescript
await hf.tabularRegression({
  model: "scikit-learn/Fish-Weight",
  inputs: {
    data: {
      "Height": ["11.52", "12.48", "12.3778"],
      "Length1": ["23.2", "24", "23.9"],
      "Length2": ["25.4", "26.3", "26.5"],
      "Length3": ["30", "31.2", "31.1"],
      "Species": ["Bream", "Bream", "Bream"],
      "Width": ["4.02", "4.3056", "4.6961"]
    },
  },
})
```

### Tabular Classification

Tabular classification is the task of classifying a target category (a group) based on set of attributes.

```typescript
await hf.tabularClassification({
  model: "vvmnnnkv/wine-quality",
  inputs: {
    data: {
      "fixed_acidity": ["7.4", "7.8", "10.3"],
      "volatile_acidity": ["0.7", "0.88", "0.32"],
      "citric_acid": ["0", "0", "0.45"],
      "residual_sugar": ["1.9", "2.6", "6.4"],
      "chlorides": ["0.076", "0.098", "0.073"],
      "free_sulfur_dioxide": ["11", "25", "5"],
      "total_sulfur_dioxide": ["34", "67", "13"],
      "density": ["0.9978", "0.9968", "0.9976"],
      "pH": ["3.51", "3.2", "3.23"],
      "sulphates": ["0.56", "0.68", "0.82"],
      "alcohol": ["9.4", "9.8", "12.6"]
    },
  },
})
```

## Custom Calls

For models with custom parameters / outputs.

```typescript
await hf.request({
  model: 'my-custom-model',
  inputs: 'hello world',
  parameters: {
    custom_param: 'some magic',
  }
})

// Custom streaming call, for models with custom parameters / outputs
for await (const output of hf.streamingRequest({
  model: 'my-custom-model',
  inputs: 'hello world',
  parameters: {
    custom_param: 'some magic',
  }
})) {
  ...
}
```

## Custom Inference Endpoints

Learn more about using your own inference endpoints [here](https://hf.co/docs/inference-endpoints/)

```typescript
const gpt2 = hf.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2');
const { generated_text } = await gpt2.textGeneration({inputs: 'The answer to the universe is'});
```

## Running tests

```console
HF_TOKEN="your access token" pnpm run test
```

## Finding appropriate models

We have an informative documentation project called [Tasks](https://huggingface.co/tasks) to list available models for each task and explain how each task works in detail.

It also contains demos, example outputs, and other resources should you want to dig deeper into the ML side of things.