File size: 2,583 Bytes
1ab5b08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2b2617
1ab5b08
 
 
 
 
 
 
 
 
 
 
 
a2b2617
1ab5b08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2b2617
1ab5b08
a2b2617
1ab5b08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
const { createApp, ref, onMounted, computed } = Vue;
import { HfInference } from "https://cdn.skypack.dev/@huggingface/inference@latest";

const getRandomImageUrl = async () => {
    const randomImageRequest = await fetch("https://source.unsplash.com/random/640x480")
    return randomImageRequest.url
}
const getImageBuffer = async (imageUrl) => {
    const imageRequest = await fetch(imageUrl)
    const imageBuffer = await imageRequest.arrayBuffer()
    return imageBuffer
}

const app = createApp({
    setup() {
        const token = ref(localStorage.getItem("token") || "");
        const models = ref(["google/vit-base-patch16-224", "microsoft/resnet-50", "timm/mobilenetv3_large_100.ra_in1k"]);
        const selectedModel = ref("");
        const imageUrl = ref("");
        const loading = ref(false);
        const didErrorOccur = ref(false)
        const classificationLabels = ref([])

        const statusMessage = computed(() => {
            if (loading.value) return "Loading..."
            return "Ready"
        })

        const run = async () => {
            reset()
            loading.value = true;
            try {
                const hf = new HfInference(token.value);
                const imageData = await getImageBuffer(imageUrl.value);
                const result = await hf.imageClassification({
                    data: imageData,
                    model: selectedModel.value,
                });
                classificationLabels.value = result
                loading.value = false;
            } catch (e) {
                console.error(e);
                loading.value = false;
                didErrorOccur.value = true
            }
        };
        const reset = () => {
            classificationLabels.value = []
            didErrorOccur.value = false
        }

        const shuffle = async () => {
            imageUrl.value = ""
            reset()
            imageUrl.value = await getRandomImageUrl()
        };

        onMounted(async () => {
            const localStorageToken = localStorage.getItem("token")
            if (localStorageToken) {
                token.value = localStorageToken;
            }
            selectedModel.value = models.value[0]
            imageUrl.value = await getRandomImageUrl()
        });

        return {
            token,
            run,
            shuffle,
            models,
            selectedModel,
            imageUrl,
            loading,
            statusMessage,
            classificationLabels
        };
    },
});

app.mount("#generate-text-stream-app");