Spaces:
Runtime error
Runtime error
Commit
·
0610f9d
1
Parent(s):
0319ee2
visualization: choose between several languages
Browse files- app.py +115 -91
- zh.arpa.bin +3 -0
- zh.sp.model +3 -0
- zh_examples_with_stats.json +3 -0
app.py
CHANGED
|
@@ -16,12 +16,12 @@ import numpy as np
|
|
| 16 |
import matplotlib.pyplot as plt
|
| 17 |
|
| 18 |
from filtering import LoadParameters, ModifyingDocuments, Filtering
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
-
class
|
| 22 |
def __init__(
|
| 23 |
self,
|
| 24 |
-
path_instructions,
|
| 25 |
path_data,
|
| 26 |
lang,
|
| 27 |
num_docs,
|
|
@@ -32,7 +32,6 @@ class Visualization:
|
|
| 32 |
path_sentencepiece_model,
|
| 33 |
path_kenlm_model,
|
| 34 |
):
|
| 35 |
-
self.path_instructions = path_instructions
|
| 36 |
self.path_data = path_data
|
| 37 |
self.lang = lang
|
| 38 |
self.num_docs = num_docs
|
|
@@ -56,32 +55,8 @@ class Visualization:
|
|
| 56 |
lang_dataset_id, path_kenlm_model
|
| 57 |
)
|
| 58 |
|
| 59 |
-
def
|
| 60 |
-
st.
|
| 61 |
-
"This demo can be a little slow, and only allows you to process up to 5000 documents "
|
| 62 |
-
"for a decent speed. If you want to display up to three times more documents and have "
|
| 63 |
-
"a faster visualization, we invite you to run this "
|
| 64 |
-
"[code](https://github.com/bigscience-workshop/data_tooling/tree/master/ac_dc/visualization) "
|
| 65 |
-
"on your computer."
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
def preamble(self):
|
| 69 |
-
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
| 70 |
-
with open(bin_file, "rb") as f:
|
| 71 |
-
data = f.read()
|
| 72 |
-
bin_str = base64.b64encode(data).decode()
|
| 73 |
-
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
| 74 |
-
return href
|
| 75 |
-
|
| 76 |
-
st.markdown(
|
| 77 |
-
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this "
|
| 78 |
-
+ get_binary_file_downloader_html(
|
| 79 |
-
self.path_instructions,
|
| 80 |
-
"pdf",
|
| 81 |
-
)
|
| 82 |
-
+ ".",
|
| 83 |
-
unsafe_allow_html=True,
|
| 84 |
-
)
|
| 85 |
|
| 86 |
def open_data(self):
|
| 87 |
with open(self.path_data) as json_file:
|
|
@@ -109,9 +84,6 @@ class Visualization:
|
|
| 109 |
self.docs_checkpoint = pd.DataFrame(docs)
|
| 110 |
self.docs = self.docs_checkpoint
|
| 111 |
|
| 112 |
-
def set_title(self):
|
| 113 |
-
st.title(f"Filtering visualization")
|
| 114 |
-
|
| 115 |
@staticmethod
|
| 116 |
def print_discarded_by_cond(cond):
|
| 117 |
st.caption(
|
|
@@ -169,9 +141,9 @@ class Visualization:
|
|
| 169 |
)
|
| 170 |
new_key = ("number_words", cutoff_min_number_words, False)
|
| 171 |
keys.append(new_key)
|
| 172 |
-
|
| 173 |
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
|
| 174 |
-
|
| 175 |
|
| 176 |
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
| 177 |
cutoff_max_number_words = st.slider(
|
|
@@ -180,7 +152,7 @@ class Visualization:
|
|
| 180 |
new_key = ("number_words", cutoff_max_number_words, True)
|
| 181 |
keys.append(new_key)
|
| 182 |
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
|
| 183 |
-
|
| 184 |
|
| 185 |
conds["number_words"] = [cond_1, cond_2]
|
| 186 |
|
|
@@ -226,9 +198,9 @@ class Visualization:
|
|
| 226 |
repetitions_length,
|
| 227 |
)
|
| 228 |
keys.append(new_key)
|
| 229 |
-
|
| 230 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 231 |
-
|
| 232 |
conds["repetitions_ratio"] = [cond]
|
| 233 |
|
| 234 |
if "special_characters_ratio" in columns:
|
|
@@ -243,9 +215,9 @@ class Visualization:
|
|
| 243 |
True,
|
| 244 |
)
|
| 245 |
keys.append(new_key)
|
| 246 |
-
|
| 247 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 248 |
-
|
| 249 |
conds["special_characters_ratio"] = [cond]
|
| 250 |
|
| 251 |
if "stopwords_ratio" in columns:
|
|
@@ -279,9 +251,9 @@ class Visualization:
|
|
| 279 |
)
|
| 280 |
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
|
| 281 |
keys.append(new_key)
|
| 282 |
-
|
| 283 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 284 |
-
|
| 285 |
conds["stopwords_ratio"] = [cond]
|
| 286 |
|
| 287 |
if "flagged_words_ratio" in columns:
|
|
@@ -316,9 +288,9 @@ class Visualization:
|
|
| 316 |
)
|
| 317 |
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
|
| 318 |
keys.append(new_key)
|
| 319 |
-
|
| 320 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 321 |
-
|
| 322 |
conds["flagged_words_ratio"] = [cond]
|
| 323 |
|
| 324 |
if "lang_id_score" in columns:
|
|
@@ -329,9 +301,9 @@ class Visualization:
|
|
| 329 |
)
|
| 330 |
new_key = ("lang_id_score", cutoff_lang_id_score, False)
|
| 331 |
keys.append(new_key)
|
| 332 |
-
|
| 333 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 334 |
-
|
| 335 |
conds["lang_id_score"] = [cond]
|
| 336 |
|
| 337 |
if "perplexity_score" in columns:
|
|
@@ -341,9 +313,9 @@ class Visualization:
|
|
| 341 |
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp)
|
| 342 |
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
| 343 |
keys.append(new_key)
|
| 344 |
-
|
| 345 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 346 |
-
|
| 347 |
conds["perplexity_score"] = [cond]
|
| 348 |
|
| 349 |
return keys, conds
|
|
@@ -361,7 +333,7 @@ class Visualization:
|
|
| 361 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
| 362 |
)
|
| 363 |
|
| 364 |
-
|
| 365 |
self.docs, np.invert(all_conds), "Discarded documents", "docs"
|
| 366 |
)
|
| 367 |
|
|
@@ -375,7 +347,7 @@ class Visualization:
|
|
| 375 |
|
| 376 |
if "number_words" in columns:
|
| 377 |
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
| 378 |
-
|
| 379 |
self.docs,
|
| 380 |
cond_filter,
|
| 381 |
"Discarded documents for the filter on the number of words",
|
|
@@ -384,7 +356,7 @@ class Visualization:
|
|
| 384 |
|
| 385 |
if "repetitions_ratio" in columns:
|
| 386 |
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0))
|
| 387 |
-
|
| 388 |
self.docs,
|
| 389 |
cond_filter,
|
| 390 |
"Discarded documents for the filter on the repetitions ratio",
|
|
@@ -395,7 +367,7 @@ class Visualization:
|
|
| 395 |
cond_filter = np.invert(
|
| 396 |
np.all(conds["special_characters_ratio"], axis=0)
|
| 397 |
)
|
| 398 |
-
|
| 399 |
self.docs,
|
| 400 |
cond_filter,
|
| 401 |
"Discarded documents for the filter on the special characters ratio",
|
|
@@ -404,7 +376,7 @@ class Visualization:
|
|
| 404 |
|
| 405 |
if "stopwords_ratio" in columns:
|
| 406 |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
| 407 |
-
|
| 408 |
self.docs,
|
| 409 |
cond_filter,
|
| 410 |
"Discarded documents for the filter on the stop words ratio",
|
|
@@ -415,7 +387,7 @@ class Visualization:
|
|
| 415 |
cond_filter = np.invert(
|
| 416 |
np.all(conds["flagged_words_ratio"], axis=0)
|
| 417 |
)
|
| 418 |
-
|
| 419 |
self.docs,
|
| 420 |
cond_filter,
|
| 421 |
"Discarded documents for the filter on the flagged words ratio",
|
|
@@ -424,7 +396,7 @@ class Visualization:
|
|
| 424 |
|
| 425 |
if "lang_id_score" in columns:
|
| 426 |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
| 427 |
-
|
| 428 |
self.docs,
|
| 429 |
cond_filter,
|
| 430 |
"Discarded documents for the filter on the language identification confidence score",
|
|
@@ -433,14 +405,14 @@ class Visualization:
|
|
| 433 |
|
| 434 |
if "perplexity_score" in columns:
|
| 435 |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
| 436 |
-
|
| 437 |
self.docs,
|
| 438 |
cond_filter,
|
| 439 |
"Discarded documents for the filter on the perplexity score",
|
| 440 |
"docs",
|
| 441 |
)
|
| 442 |
|
| 443 |
-
|
| 444 |
self.docs, all_conds, "Retained documents", "docs"
|
| 445 |
)
|
| 446 |
|
|
@@ -468,9 +440,9 @@ class Visualization:
|
|
| 468 |
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word)
|
| 469 |
new_key = ("len_word", cutoff_word, True)
|
| 470 |
self.parameters.append(new_key)
|
| 471 |
-
|
| 472 |
cond_len_words = self.words["len_word"] <= cutoff_word
|
| 473 |
-
|
| 474 |
conds_words["len_word"] = cond_len_words
|
| 475 |
|
| 476 |
if "incorrect_substrings" in columns:
|
|
@@ -509,7 +481,7 @@ class Visualization:
|
|
| 509 |
for i in range(len(self.words["incorrect_substrings"]))
|
| 510 |
]
|
| 511 |
)
|
| 512 |
-
|
| 513 |
conds_words["incorrect_substrings"] = cond_incorrect_substrings
|
| 514 |
|
| 515 |
all_conds_words = np.all(list(conds_words.values()), axis=0)
|
|
@@ -526,7 +498,7 @@ class Visualization:
|
|
| 526 |
f"we consider in this section words for only {self.num_docs_for_words} documents."
|
| 527 |
)
|
| 528 |
|
| 529 |
-
|
| 530 |
self.words, np.invert(all_conds_words), "Discarded words", "words"
|
| 531 |
)
|
| 532 |
|
|
@@ -539,7 +511,7 @@ class Visualization:
|
|
| 539 |
|
| 540 |
if "len_word" in columns:
|
| 541 |
cond_filter = np.invert(conds_words["len_word"])
|
| 542 |
-
|
| 543 |
self.words,
|
| 544 |
cond_filter,
|
| 545 |
"Discarded words for the filter on length",
|
|
@@ -548,14 +520,14 @@ class Visualization:
|
|
| 548 |
|
| 549 |
if "incorrect_substrings" in columns:
|
| 550 |
cond_filter = np.invert(conds_words["incorrect_substrings"])
|
| 551 |
-
|
| 552 |
self.words,
|
| 553 |
cond_filter,
|
| 554 |
"Discarded words for the filter on incorrect substrings",
|
| 555 |
"words",
|
| 556 |
)
|
| 557 |
|
| 558 |
-
|
| 559 |
self.words, all_conds_words, "Retained words", "words"
|
| 560 |
)
|
| 561 |
|
|
@@ -709,40 +681,92 @@ class Visualization:
|
|
| 709 |
f"With the current filtering parameters, this document **is {is_discarded}discarded**."
|
| 710 |
)
|
| 711 |
|
| 712 |
-
def
|
| 713 |
-
self.warning_preamble()
|
| 714 |
-
self.preamble()
|
| 715 |
-
self.open_data()
|
| 716 |
self.set_title()
|
|
|
|
| 717 |
self.filtering_of_docs()
|
| 718 |
self.filtering_of_words()
|
| 719 |
self.download_parameters()
|
| 720 |
self.analyse_personal_doc()
|
| 721 |
|
| 722 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 723 |
path_instructions = "./explanation_filtering_pipeline.pdf"
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
num_docs_for_words,
|
| 742 |
-
max_len_text_display,
|
| 743 |
-
lang_dataset_id,
|
| 744 |
-
path_fasttext_model,
|
| 745 |
-
path_sentencepiece_model,
|
| 746 |
-
path_kenlm_model,
|
| 747 |
-
)
|
| 748 |
visualization.visualization()
|
|
|
|
| 16 |
import matplotlib.pyplot as plt
|
| 17 |
|
| 18 |
from filtering import LoadParameters, ModifyingDocuments, Filtering
|
| 19 |
+
from languages_id import langs_id
|
| 20 |
|
| 21 |
|
| 22 |
+
class Visualization_for_lang:
|
| 23 |
def __init__(
|
| 24 |
self,
|
|
|
|
| 25 |
path_data,
|
| 26 |
lang,
|
| 27 |
num_docs,
|
|
|
|
| 32 |
path_sentencepiece_model,
|
| 33 |
path_kenlm_model,
|
| 34 |
):
|
|
|
|
| 35 |
self.path_data = path_data
|
| 36 |
self.lang = lang
|
| 37 |
self.num_docs = num_docs
|
|
|
|
| 55 |
lang_dataset_id, path_kenlm_model
|
| 56 |
)
|
| 57 |
|
| 58 |
+
def set_title(self):
|
| 59 |
+
st.title(f"Filtering visualization for {self.lang}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def open_data(self):
|
| 62 |
with open(self.path_data) as json_file:
|
|
|
|
| 84 |
self.docs_checkpoint = pd.DataFrame(docs)
|
| 85 |
self.docs = self.docs_checkpoint
|
| 86 |
|
|
|
|
|
|
|
|
|
|
| 87 |
@staticmethod
|
| 88 |
def print_discarded_by_cond(cond):
|
| 89 |
st.caption(
|
|
|
|
| 141 |
)
|
| 142 |
new_key = ("number_words", cutoff_min_number_words, False)
|
| 143 |
keys.append(new_key)
|
| 144 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 145 |
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
|
| 146 |
+
Visualization_for_lang.print_discarded_by_cond(cond_1)
|
| 147 |
|
| 148 |
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
| 149 |
cutoff_max_number_words = st.slider(
|
|
|
|
| 152 |
new_key = ("number_words", cutoff_max_number_words, True)
|
| 153 |
keys.append(new_key)
|
| 154 |
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
|
| 155 |
+
Visualization_for_lang.print_discarded_by_cond(cond_2)
|
| 156 |
|
| 157 |
conds["number_words"] = [cond_1, cond_2]
|
| 158 |
|
|
|
|
| 198 |
repetitions_length,
|
| 199 |
)
|
| 200 |
keys.append(new_key)
|
| 201 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 202 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 203 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 204 |
conds["repetitions_ratio"] = [cond]
|
| 205 |
|
| 206 |
if "special_characters_ratio" in columns:
|
|
|
|
| 215 |
True,
|
| 216 |
)
|
| 217 |
keys.append(new_key)
|
| 218 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 219 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 220 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 221 |
conds["special_characters_ratio"] = [cond]
|
| 222 |
|
| 223 |
if "stopwords_ratio" in columns:
|
|
|
|
| 251 |
)
|
| 252 |
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
|
| 253 |
keys.append(new_key)
|
| 254 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 255 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 256 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 257 |
conds["stopwords_ratio"] = [cond]
|
| 258 |
|
| 259 |
if "flagged_words_ratio" in columns:
|
|
|
|
| 288 |
)
|
| 289 |
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
|
| 290 |
keys.append(new_key)
|
| 291 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 292 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 293 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 294 |
conds["flagged_words_ratio"] = [cond]
|
| 295 |
|
| 296 |
if "lang_id_score" in columns:
|
|
|
|
| 301 |
)
|
| 302 |
new_key = ("lang_id_score", cutoff_lang_id_score, False)
|
| 303 |
keys.append(new_key)
|
| 304 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 305 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 306 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 307 |
conds["lang_id_score"] = [cond]
|
| 308 |
|
| 309 |
if "perplexity_score" in columns:
|
|
|
|
| 313 |
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp)
|
| 314 |
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
| 315 |
keys.append(new_key)
|
| 316 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
| 317 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 318 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
| 319 |
conds["perplexity_score"] = [cond]
|
| 320 |
|
| 321 |
return keys, conds
|
|
|
|
| 333 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
| 334 |
)
|
| 335 |
|
| 336 |
+
Visualization_for_lang.display_dataset(
|
| 337 |
self.docs, np.invert(all_conds), "Discarded documents", "docs"
|
| 338 |
)
|
| 339 |
|
|
|
|
| 347 |
|
| 348 |
if "number_words" in columns:
|
| 349 |
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
| 350 |
+
Visualization_for_lang.display_dataset(
|
| 351 |
self.docs,
|
| 352 |
cond_filter,
|
| 353 |
"Discarded documents for the filter on the number of words",
|
|
|
|
| 356 |
|
| 357 |
if "repetitions_ratio" in columns:
|
| 358 |
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0))
|
| 359 |
+
Visualization_for_lang.display_dataset(
|
| 360 |
self.docs,
|
| 361 |
cond_filter,
|
| 362 |
"Discarded documents for the filter on the repetitions ratio",
|
|
|
|
| 367 |
cond_filter = np.invert(
|
| 368 |
np.all(conds["special_characters_ratio"], axis=0)
|
| 369 |
)
|
| 370 |
+
Visualization_for_lang.display_dataset(
|
| 371 |
self.docs,
|
| 372 |
cond_filter,
|
| 373 |
"Discarded documents for the filter on the special characters ratio",
|
|
|
|
| 376 |
|
| 377 |
if "stopwords_ratio" in columns:
|
| 378 |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
| 379 |
+
Visualization_for_lang.display_dataset(
|
| 380 |
self.docs,
|
| 381 |
cond_filter,
|
| 382 |
"Discarded documents for the filter on the stop words ratio",
|
|
|
|
| 387 |
cond_filter = np.invert(
|
| 388 |
np.all(conds["flagged_words_ratio"], axis=0)
|
| 389 |
)
|
| 390 |
+
Visualization_for_lang.display_dataset(
|
| 391 |
self.docs,
|
| 392 |
cond_filter,
|
| 393 |
"Discarded documents for the filter on the flagged words ratio",
|
|
|
|
| 396 |
|
| 397 |
if "lang_id_score" in columns:
|
| 398 |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
| 399 |
+
Visualization_for_lang.display_dataset(
|
| 400 |
self.docs,
|
| 401 |
cond_filter,
|
| 402 |
"Discarded documents for the filter on the language identification confidence score",
|
|
|
|
| 405 |
|
| 406 |
if "perplexity_score" in columns:
|
| 407 |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
| 408 |
+
Visualization_for_lang.display_dataset(
|
| 409 |
self.docs,
|
| 410 |
cond_filter,
|
| 411 |
"Discarded documents for the filter on the perplexity score",
|
| 412 |
"docs",
|
| 413 |
)
|
| 414 |
|
| 415 |
+
Visualization_for_lang.display_dataset(
|
| 416 |
self.docs, all_conds, "Retained documents", "docs"
|
| 417 |
)
|
| 418 |
|
|
|
|
| 440 |
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word)
|
| 441 |
new_key = ("len_word", cutoff_word, True)
|
| 442 |
self.parameters.append(new_key)
|
| 443 |
+
Visualization_for_lang.plot_hist(self.words, new_key)
|
| 444 |
cond_len_words = self.words["len_word"] <= cutoff_word
|
| 445 |
+
Visualization_for_lang.print_discarded_by_cond(cond_len_words)
|
| 446 |
conds_words["len_word"] = cond_len_words
|
| 447 |
|
| 448 |
if "incorrect_substrings" in columns:
|
|
|
|
| 481 |
for i in range(len(self.words["incorrect_substrings"]))
|
| 482 |
]
|
| 483 |
)
|
| 484 |
+
Visualization_for_lang.print_discarded_by_cond(cond_incorrect_substrings)
|
| 485 |
conds_words["incorrect_substrings"] = cond_incorrect_substrings
|
| 486 |
|
| 487 |
all_conds_words = np.all(list(conds_words.values()), axis=0)
|
|
|
|
| 498 |
f"we consider in this section words for only {self.num_docs_for_words} documents."
|
| 499 |
)
|
| 500 |
|
| 501 |
+
Visualization_for_lang.display_dataset(
|
| 502 |
self.words, np.invert(all_conds_words), "Discarded words", "words"
|
| 503 |
)
|
| 504 |
|
|
|
|
| 511 |
|
| 512 |
if "len_word" in columns:
|
| 513 |
cond_filter = np.invert(conds_words["len_word"])
|
| 514 |
+
Visualization_for_lang.display_dataset(
|
| 515 |
self.words,
|
| 516 |
cond_filter,
|
| 517 |
"Discarded words for the filter on length",
|
|
|
|
| 520 |
|
| 521 |
if "incorrect_substrings" in columns:
|
| 522 |
cond_filter = np.invert(conds_words["incorrect_substrings"])
|
| 523 |
+
Visualization_for_lang.display_dataset(
|
| 524 |
self.words,
|
| 525 |
cond_filter,
|
| 526 |
"Discarded words for the filter on incorrect substrings",
|
| 527 |
"words",
|
| 528 |
)
|
| 529 |
|
| 530 |
+
Visualization_for_lang.display_dataset(
|
| 531 |
self.words, all_conds_words, "Retained words", "words"
|
| 532 |
)
|
| 533 |
|
|
|
|
| 681 |
f"With the current filtering parameters, this document **is {is_discarded}discarded**."
|
| 682 |
)
|
| 683 |
|
| 684 |
+
def visualization_for_lang(self):
|
|
|
|
|
|
|
|
|
|
| 685 |
self.set_title()
|
| 686 |
+
self.open_data()
|
| 687 |
self.filtering_of_docs()
|
| 688 |
self.filtering_of_words()
|
| 689 |
self.download_parameters()
|
| 690 |
self.analyse_personal_doc()
|
| 691 |
|
| 692 |
|
| 693 |
+
class Visualization:
|
| 694 |
+
def __init__(self, path_instructions, param_visu_langs):
|
| 695 |
+
self.path_instructions = path_instructions
|
| 696 |
+
self.param_visu_langs = param_visu_langs
|
| 697 |
+
|
| 698 |
+
def preamble(self):
|
| 699 |
+
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
| 700 |
+
with open(bin_file, "rb") as f:
|
| 701 |
+
data = f.read()
|
| 702 |
+
bin_str = base64.b64encode(data).decode()
|
| 703 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
| 704 |
+
return href
|
| 705 |
+
|
| 706 |
+
st.markdown(
|
| 707 |
+
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this "
|
| 708 |
+
+ get_binary_file_downloader_html(
|
| 709 |
+
self.path_instructions,
|
| 710 |
+
"pdf",
|
| 711 |
+
)
|
| 712 |
+
+ ".",
|
| 713 |
+
unsafe_allow_html=True,
|
| 714 |
+
)
|
| 715 |
+
|
| 716 |
+
def warning_preamble(self):
|
| 717 |
+
st.markdown(
|
| 718 |
+
"This demo can be a little slow, and only allows you to process up to 5000 documents "
|
| 719 |
+
"for a decent speed. If you want to display up to three times more documents and have "
|
| 720 |
+
"a faster visualization, we invite you to run this "
|
| 721 |
+
"[code](https://github.com/bigscience-workshop/data_tooling/tree/master/ac_dc/visualization) "
|
| 722 |
+
"on your computer."
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
def choose_lang(self):
|
| 726 |
+
options = [self.param_visu_langs[lang_dataset_id]["lang"] for lang_dataset_id in self.param_visu_langs]
|
| 727 |
+
index = options.index("English") if ("English" in options) else 0
|
| 728 |
+
lang_chosen = st.selectbox(
|
| 729 |
+
label="Select the language for visualization",
|
| 730 |
+
options=options,
|
| 731 |
+
index=index,
|
| 732 |
+
)
|
| 733 |
+
if lang_chosen != "None":
|
| 734 |
+
lang_chosen_dataset_id = langs_id.loc[langs_id["lang"] == lang_chosen, "dataset_id"].iloc[0]
|
| 735 |
+
visualization_for_lang = Visualization_for_lang(
|
| 736 |
+
path_data = self.param_visu_langs[lang_chosen_dataset_id]["path_data"],
|
| 737 |
+
lang = self.param_visu_langs[lang_chosen_dataset_id]["lang"],
|
| 738 |
+
num_docs = self.param_visu_langs[lang_chosen_dataset_id]["num_docs"],
|
| 739 |
+
num_docs_for_words = self.param_visu_langs[lang_chosen_dataset_id]["num_docs_for_words"],
|
| 740 |
+
max_len_text_display = self.param_visu_langs[lang_chosen_dataset_id]["max_len_text_display"],
|
| 741 |
+
lang_dataset_id = self.param_visu_langs[lang_chosen_dataset_id]["lang_dataset_id"],
|
| 742 |
+
path_fasttext_model = self.param_visu_langs[lang_chosen_dataset_id]["path_fasttext_model"],
|
| 743 |
+
path_sentencepiece_model = self.param_visu_langs[lang_chosen_dataset_id]["path_sentencepiece_model"],
|
| 744 |
+
path_kenlm_model = self.param_visu_langs[lang_chosen_dataset_id]["path_kenlm_model"],
|
| 745 |
+
)
|
| 746 |
+
visualization_for_lang.visualization_for_lang()
|
| 747 |
+
|
| 748 |
+
def visualization(self):
|
| 749 |
+
self.preamble()
|
| 750 |
+
self.warning_preamble()
|
| 751 |
+
self.choose_lang()
|
| 752 |
+
|
| 753 |
+
|
| 754 |
path_instructions = "./explanation_filtering_pipeline.pdf"
|
| 755 |
+
|
| 756 |
+
param_visu_langs = {
|
| 757 |
+
lang_dataset_id: {
|
| 758 |
+
"path_data": f"./{lang_dataset_id}_examples_with_stats.json",
|
| 759 |
+
"lang": langs_id.loc[langs_id["dataset_id"] == lang_dataset_id, "lang"].iloc[0],
|
| 760 |
+
"num_docs": 5000,
|
| 761 |
+
"num_docs_for_words": 500,
|
| 762 |
+
"max_len_text_display": 10000,
|
| 763 |
+
"lang_dataset_id": lang_dataset_id,
|
| 764 |
+
"path_fasttext_model": "./lid.176.bin",
|
| 765 |
+
"path_sentencepiece_model": f"./{lang_dataset_id}.sp.model",
|
| 766 |
+
"path_kenlm_model": f"./{lang_dataset_id}.arpa.bin",
|
| 767 |
+
}
|
| 768 |
+
for lang_dataset_id in ["en", "zh"]
|
| 769 |
+
}
|
| 770 |
+
|
| 771 |
+
visualization = Visualization(path_instructions, param_visu_langs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 772 |
visualization.visualization()
|
zh.arpa.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f157d94cb2828bbb44b5dddf38e7eb7f62a47d317917646a73fe2af50a3dad68
|
| 3 |
+
size 3392018416
|
zh.sp.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b30b883dfac9927edeb1fba8894ebc8ca4452aa3e26fb4ff3ff0e653ba011db7
|
| 3 |
+
size 1366946
|
zh_examples_with_stats.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90ffaf5e5c7b556587c8b2b97ad49c752bea5608d5cc56b7ea03fb0d96a71fd2
|
| 3 |
+
size 62914634
|