paper-central / paper_chat_tab.py
jbdel
chat_with_paper_update
8c5c31d
raw
history blame
18.2 kB
import gradio as gr
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import openai
import traceback
import requests
from io import BytesIO
from transformers import AutoTokenizer
import json
from datetime import datetime
import os
from openai import OpenAI
import re
# Cache for tokenizers to avoid reloading
tokenizer_cache = {}
# Global variables for providers
PROVIDERS = {
"SambaNova": {
"name": "SambaNova",
"logo": "https://venturebeat.com/wp-content/uploads/2020/02/SambaNovaLogo_H_F.jpg",
"endpoint": "https://api.sambanova.ai/v1/",
"api_key_env_var": "SAMBANOVA_API_KEY",
"models": [
"Meta-Llama-3.1-70B-Instruct",
],
"type": "tuples",
"max_total_tokens": "50000",
},
"Hyperbolic": {
"name": "hyperbolic",
"logo": "https://www.nftgators.com/wp-content/uploads/2024/07/Hyperbolic.jpg",
"endpoint": "https://api.hyperbolic.xyz/v1",
"api_key_env_var": "HYPERBOLIC_API_KEY",
"models": [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Meta-Llama-3.1-405B-Instruct",
],
"type": "tuples",
"max_total_tokens": "50000",
},
}
# Functions for paper fetching
def fetch_paper_info_neurips(paper_id):
url = f"https://openreview.net/forum?id={paper_id}"
response = requests.get(url)
if response.status_code != 200:
return None, None, None
html_content = response.content
soup = BeautifulSoup(html_content, 'html.parser')
# Extract title
title_tag = soup.find('h2', class_='citation_title')
title = title_tag.get_text(strip=True) if title_tag else 'Title not found'
# Extract authors
authors = []
author_div = soup.find('div', class_='forum-authors')
if author_div:
author_tags = author_div.find_all('a')
authors = [tag.get_text(strip=True) for tag in author_tags]
author_list = ', '.join(authors) if authors else 'Authors not found'
# Extract abstract
abstract_div = soup.find('strong', text='Abstract:')
if abstract_div:
abstract_paragraph = abstract_div.find_next_sibling('div')
abstract = abstract_paragraph.get_text(strip=True) if abstract_paragraph else 'Abstract not found'
else:
abstract = 'Abstract not found'
# Construct preamble
link = f"https://openreview.net/forum?id={paper_id}"
return title, author_list, f"**Abstract:** {abstract}\n\n[View on OpenReview]({link})"
def fetch_paper_content_neurips(paper_id):
try:
url = f"https://openreview.net/pdf?id={paper_id}"
response = requests.get(url)
response.raise_for_status()
pdf_content = BytesIO(response.content)
reader = PdfReader(pdf_content)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
except:
return None
def fetch_paper_content_arxiv(paper_id):
try:
url = f"https://arxiv.org/pdf/{paper_id}.pdf"
response = requests.get(url)
response.raise_for_status()
pdf_content = BytesIO(response.content)
reader = PdfReader(pdf_content)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
except Exception as e:
print(f"Error fetching paper content: {e}")
return None
def fetch_paper_info_paperpage(paper_id_value):
# Extract paper_id from paper_page link or input
def extract_paper_id(input_string):
# Already in correct form?
if re.fullmatch(r'\d+\.\d+', input_string.strip()):
return input_string.strip()
# If URL
match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
if match:
return match.group(1)
return input_string.strip()
paper_id_value = extract_paper_id(paper_id_value)
url = f"https://huggingface.co/api/papers/{paper_id_value}?field=comments"
response = requests.get(url)
if response.status_code != 200:
return None, None, None
paper_info = response.json()
title = paper_info.get('title', 'No Title')
authors_list = [author.get('name', 'Unknown') for author in paper_info.get('authors', [])]
authors = ', '.join(authors_list)
summary = paper_info.get('summary', 'No Summary')
num_comments = len(paper_info.get('comments', []))
num_upvotes = paper_info.get('upvotes', 0)
link = f"https://huggingface.co/papers/{paper_id_value}"
details = f"{summary}<br/>👍{num_comments} 💬{num_upvotes}<br/> <a href='{link}' " \
f"target='_blank'>View on 🤗 hugging face</a>"
return title, authors, details
def fetch_paper_content_paperpage(paper_id_value):
# Extract paper_id
def extract_paper_id(input_string):
if re.fullmatch(r'\d+\.\d+', input_string.strip()):
return input_string.strip()
match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
if match:
return match.group(1)
return input_string.strip()
paper_id_value = extract_paper_id(paper_id_value)
text = fetch_paper_content_arxiv(paper_id_value)
return text
# Dictionary for paper sources
PAPER_SOURCES = {
"neurips": {
"fetch_info": fetch_paper_info_neurips,
"fetch_pdf": fetch_paper_content_neurips
},
"paper_page": {
"fetch_info": fetch_paper_info_paperpage,
"fetch_pdf": fetch_paper_content_paperpage
}
}
def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
provider_max_total_tokens):
# Define the function to handle the chat
def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
max_total_tokens):
provider_info = PROVIDERS[provider_name_value]
endpoint = provider_info['endpoint']
api_key_env_var = provider_info['api_key_env_var']
models = provider_info['models']
max_total_tokens = int(max_total_tokens)
# Load tokenizer
tokenizer_key = f"{provider_name_value}_{model_name_value}"
if tokenizer_key not in tokenizer_cache:
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
token=os.environ.get("HF_TOKEN"))
tokenizer_cache[tokenizer_key] = tokenizer
else:
tokenizer = tokenizer_cache[tokenizer_key]
# Include the paper content as context
if paper_content_value:
context = f"The discussion is about the following paper:\n{paper_content_value}\n\n"
else:
context = ""
# Tokenize the context
context_tokens = tokenizer.encode(context)
context_token_length = len(context_tokens)
# Prepare the messages without context
messages = []
message_tokens_list = []
total_tokens = context_token_length # Start with context tokens
for user_msg, assistant_msg in history:
# Tokenize user message
user_tokens = tokenizer.encode(user_msg)
messages.append({"role": "user", "content": user_msg})
message_tokens_list.append(len(user_tokens))
total_tokens += len(user_tokens)
# Tokenize assistant message
if assistant_msg:
assistant_tokens = tokenizer.encode(assistant_msg)
messages.append({"role": "assistant", "content": assistant_msg})
message_tokens_list.append(len(assistant_tokens))
total_tokens += len(assistant_tokens)
# Tokenize the new user message
message_tokens = tokenizer.encode(message)
messages.append({"role": "user", "content": message})
message_tokens_list.append(len(message_tokens))
total_tokens += len(message_tokens)
# Check if total tokens exceed the maximum allowed tokens
if total_tokens > max_total_tokens:
# Attempt to truncate context
available_tokens = max_total_tokens - (total_tokens - context_token_length)
if available_tokens > 0:
truncated_context_tokens = context_tokens[:available_tokens]
context = tokenizer.decode(truncated_context_tokens)
context_token_length = available_tokens
total_tokens = total_tokens - len(context_tokens) + context_token_length
else:
context = ""
total_tokens -= context_token_length
context_token_length = 0
# Truncate message history if needed
while total_tokens > max_total_tokens and len(messages) > 1:
removed_message = messages.pop(0)
removed_tokens = message_tokens_list.pop(0)
total_tokens -= removed_tokens
# Rebuild the final messages
final_messages = []
if context:
final_messages.append({"role": "system", "content": f"{context}"})
final_messages.extend(messages)
# Use the provider's API key
api_key = hf_token_value or os.environ.get(api_key_env_var)
if not api_key:
raise ValueError("API token is not provided.")
# Initialize the OpenAI client
client = OpenAI(
base_url=endpoint,
api_key=api_key,
)
try:
completion = client.chat.completions.create(
model=model_name_value,
messages=final_messages,
stream=True,
)
response_text = ""
for chunk in completion:
delta = chunk.choices[0].delta.content or ""
response_text += delta
yield response_text
except json.JSONDecodeError as e:
yield f"JSON decoding error: {e.msg}"
except openai.OpenAIError as openai_err:
yield f"OpenAI error: {openai_err}"
except Exception as ex:
yield f"Unexpected error: {ex}"
chatbot = gr.Chatbot(label="Chatbot", scale=1, height=400, autoscroll=True)
chat_interface = gr.ChatInterface(
fn=get_fn,
chatbot=chatbot,
additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
type="tuples",
)
return chat_interface, chatbot
def paper_chat_tab(paper_id, paper_from, paper_central_df):
with gr.Row():
# Left column: Paper selection and display
with gr.Column(scale=1):
gr.Markdown("### Select a Paper")
todays_date = datetime.today().strftime('%Y-%m-%d')
# Filter papers for today's date and having a paper_page
selectable_papers = paper_central_df.df_prettified
selectable_papers = selectable_papers[
selectable_papers['paper_page'].notna() &
(selectable_papers['paper_page'] != "") &
(selectable_papers['date'] == todays_date)
]
paper_choices = [(row['title'], row['paper_page']) for _, row in selectable_papers.iterrows()]
paper_choices = sorted(paper_choices, key=lambda x: x[0])
if not paper_choices:
paper_choices = [("No available papers for today", "")]
paper_select = gr.Dropdown(
label="Select a paper to chat with:",
choices=[p[0] for p in paper_choices],
value=paper_choices[0][0] if paper_choices else None
)
select_paper_button = gr.Button("Load this paper")
# Paper info display - styled card
content = gr.HTML(value="", elem_id="paper_info_card")
# Right column: Provider and model selection + chat
with gr.Column(scale=1, visible=False) as provider_section:
gr.Markdown("### LLM Provider and Model")
provider_names = list(PROVIDERS.keys())
default_provider = provider_names[0]
default_type = gr.State(value=PROVIDERS[default_provider]["type"])
default_max_total_tokens = gr.State(value=PROVIDERS[default_provider]["max_total_tokens"])
provider_dropdown = gr.Dropdown(
label="Select Provider",
choices=provider_names,
value=default_provider
)
hf_token_input = gr.Textbox(
label=f"Enter your {default_provider} API token (optional)",
type="password",
placeholder=f"Enter your {default_provider} API token to avoid rate limits"
)
model_dropdown = gr.Dropdown(
label="Select Model",
choices=PROVIDERS[default_provider]['models'],
value=PROVIDERS[default_provider]['models'][0]
)
logo_html = gr.HTML(
value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
)
note_markdown = gr.Markdown(f"**Note:** This model is supported by {default_provider}.")
paper_content = gr.State()
# Create chat interface
chat_interface, chatbot = create_chat_interface(provider_dropdown, model_dropdown, paper_content,
hf_token_input, default_type, default_max_total_tokens)
def update_provider(selected_provider):
provider_info = PROVIDERS[selected_provider]
models = provider_info['models']
logo_url = provider_info['logo']
chatbot_message_type = provider_info['type']
max_total_tokens = provider_info['max_total_tokens']
model_dropdown_choices = gr.update(choices=models, value=models[0])
logo_html_content = f'<img src="{logo_url}" width="100px" />'
logo_html_update = gr.update(value=logo_html_content)
note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")
hf_token_input_update = gr.update(
label=f"Enter your {selected_provider} API token (optional)",
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
)
chatbot_reset = []
return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, chatbot_message_type, max_total_tokens, chatbot_reset
provider_dropdown.change(
fn=update_provider,
inputs=provider_dropdown,
outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens,
chatbot],
queue=False
)
def update_paper_info(paper_id_value, paper_from_value, selected_model, old_content):
# Use PAPER_SOURCES to fetch info
source_info = PAPER_SOURCES.get(paper_from_value, {})
fetch_info_fn = source_info.get("fetch_info")
fetch_pdf_fn = source_info.get("fetch_pdf")
if not fetch_info_fn or not fetch_pdf_fn:
return gr.update(value="<div>No information available.</div>"), None, []
title, authors, details = fetch_info_fn(paper_id_value)
if title is None and authors is None and details is None:
return gr.update(value="<div>No information could be retrieved.</div>"), None, []
text = fetch_pdf_fn(paper_id_value)
if text is None:
text = "Paper content could not be retrieved."
# Create a styled card for the paper info
card_html = f"""
<div style="border:1px solid #ccc; border-radius:6px; background:#f9f9f9; padding:15px; margin-bottom:10px;">
<center><h3 style="margin-top:0; text-decoration:underline;">You are talking with:</h3></center>
<h3>{title}</h3>
<p><strong>Authors:</strong> {authors}</p>
<p>{details}</p>
</div>
"""
return gr.update(value=card_html), text, []
def select_paper(paper_title):
# Find the corresponding paper_page from the title
for t, ppage in paper_choices:
if t == paper_title:
return ppage, "paper_page"
return "", ""
select_paper_button.click(
fn=select_paper,
inputs=[paper_select],
outputs=[paper_id, paper_from]
)
# After updating paper_id, we update paper info
paper_id.change(
fn=update_paper_info,
inputs=[paper_id, paper_from, model_dropdown, content],
outputs=[content, paper_content, chatbot]
)
# Function to toggle visibility of the right column based on paper_id
def toggle_provider_visibility(paper_id_value):
if paper_id_value and paper_id_value.strip():
return gr.update(visible=True)
else:
return gr.update(visible=False)
# Chain a then call to toggle visibility of the provider_section after paper info update
paper_id.change(
fn=toggle_provider_visibility,
inputs=[paper_id],
outputs=[provider_section]
)
def main():
"""
Launches the Gradio app.
"""
with gr.Blocks(css_paths="style.css") as demo:
paper_id = gr.Textbox(label="Paper ID", value="")
paper_from = gr.Radio(
label="Paper Source",
choices=["neurips", "paper_page"],
value="neurips"
)
# Build the paper chat tab
dummy_calendar = gr.State(datetime.now().strftime("%Y-%m-%d"))
class MockPaperCentral:
def __init__(self):
import pandas as pd
data = {
'date': [datetime.today().strftime('%Y-%m-%d')],
'paper_page': ['1234.56789'],
'title': ['An Example Paper']
}
self.df_prettified = pd.DataFrame(data)
paper_central_df = MockPaperCentral()
paper_chat_tab(paper_id, paper_from, paper_central_df)
demo.launch(ssr_mode=False)
if __name__ == "__main__":
main()