File size: 8,864 Bytes
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cd6af
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cd6af
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from pathlib import Path

import numpy as np
import pandas as pd
import powerlaw
import streamlit as st
from scipy.stats import ks_2samp
from scipy.stats import zipf as zipf_lib

from .dataset_utils import CNT, PROP

# treating inf values as NaN as well

pd.set_option("use_inf_as_na", True)

logs = logging.getLogger(__name__)
logs.setLevel(logging.INFO)
logs.propagate = False

if not logs.handlers:

    Path('./log_files').mkdir(exist_ok=True)

    # Logging info to log file
    file = logging.FileHandler("./log_files/zipf.log")
    fileformat = logging.Formatter("%(asctime)s:%(message)s")
    file.setLevel(logging.INFO)
    file.setFormatter(fileformat)

    # Logging debug messages to stream
    stream = logging.StreamHandler()
    streamformat = logging.Formatter("[data_measurements_tool] %(message)s")
    stream.setLevel(logging.WARNING)
    stream.setFormatter(streamformat)

    logs.addHandler(file)
    logs.addHandler(stream)


class Zipf:
    def __init__(self, vocab_counts_df=pd.DataFrame()):
        self.vocab_counts_df = vocab_counts_df
        self.alpha = None
        self.xmin = None
        self.xmax = None
        self.fit = None
        self.ranked_words = {}
        self.uniq_counts = []
        self.uniq_ranks = []
        self.uniq_fit_counts = None
        self.term_df = None
        self.pvalue = None
        self.ks_test = None
        self.distance = None
        self.fit = None
        self.predicted_zipf_counts = None
        if not self.vocab_counts_df.empty:
            logs.info("Fitting based on input vocab counts.")
            self.calc_fit(vocab_counts_df)
            logs.info("Getting predicted counts.")
            self.predicted_zipf_counts = self.calc_zipf_counts(vocab_counts_df)

    def load(self, zipf_dict):
        self.set_xmin(zipf_dict["xmin"])
        self.set_xmax(zipf_dict["xmax"])
        self.set_alpha(zipf_dict["alpha"])
        self.set_ks_distance(zipf_dict["ks_distance"])
        self.set_p(zipf_dict["p-value"])
        self.set_unique_ranks(zipf_dict["uniq_ranks"])
        self.set_unique_counts(zipf_dict["uniq_counts"])

    def calc_fit(self, vocab_counts_df):
        """
        Uses the powerlaw package to fit the observed frequencies to a zipfian distribution.
        We use the KS-distance to fit, as that seems more appropriate that MLE.
        :param vocab_counts_df:
        :return:
        """
        self.vocab_counts_df = vocab_counts_df
        # TODO: These proportions may have already been calculated.
        vocab_counts_df[PROP] = vocab_counts_df[CNT] / float(sum(vocab_counts_df[CNT]))
        rank_column = vocab_counts_df[CNT].rank(
            method="dense", numeric_only=True, ascending=False
        )
        vocab_counts_df["rank"] = rank_column.astype("int64")
        observed_counts = vocab_counts_df[CNT].values
        # Note another method for determining alpha might be defined by
        # (Newman, 2005): alpha = 1 + n * sum(ln( xi / xmin )) ^ -1
        self.fit = powerlaw.Fit(observed_counts, fit_method="KS", discrete=True)
        # This should probably be a pmf (not pdf); using discrete=True above.
        # original_data=False uses only the fitted data (within xmin and xmax).
        # pdf_bin_edges: The portion of the data within the bin.
        # observed_pdf: The probability density function (normalized histogram)
        # of the data.
        pdf_bin_edges, observed_pdf = self.fit.pdf(original_data=False)
        # See the 'Distribution' class described here for info:
        # https://pythonhosted.org/powerlaw/#powerlaw.Fit.pdf
        theoretical_distro = self.fit.power_law
        # The probability density function (normalized histogram) of the
        # theoretical distribution.
        predicted_pdf = theoretical_distro.pdf()
        # !!!! CRITICAL VALUE FOR ZIPF !!!!
        self.alpha = theoretical_distro.alpha
        # Exclusive xmin: The optimal xmin *beyond which* the scaling regime of
        # the power law fits best.
        self.xmin = theoretical_distro.xmin
        self.xmax = theoretical_distro.xmax
        self.distance = theoretical_distro.KS()
        self.ks_test = ks_2samp(observed_pdf, predicted_pdf)
        self.pvalue = self.ks_test[1]
        logs.info("KS test:")
        logs.info(self.ks_test)

    def set_xmax(self, xmax):
        """
        xmax is usually None, so we add some handling to set it as the
        maximum rank in the dataset.
        :param xmax:
        :return:
        """
        if xmax:
            self.xmax = int(xmax)
        elif self.uniq_counts:
            self.xmax = int(len(self.uniq_counts))
        elif self.uniq_ranks:
            self.xmax = int(len(self.uniq_ranks))

    def get_xmax(self):
        """
        :return:
        """
        if not self.xmax:
            self.set_xmax(self.xmax)
        return self.xmax

    def set_p(self, p):
        self.p = int(p)

    def get_p(self):
        return int(self.p)

    def set_xmin(self, xmin):
        self.xmin = xmin

    def get_xmin(self):
        if self.xmin:
            return int(self.xmin)
        return self.xmin

    def set_alpha(self, alpha):
        self.alpha = float(alpha)

    def get_alpha(self):
        return float(self.alpha)

    def set_ks_distance(self, distance):
        self.distance = float(distance)

    def get_ks_distance(self):
        return self.distance

    def calc_zipf_counts(self, vocab_counts_df):
        """
        The fit is based on an optimal xmin (minimum rank)
        Let's use this to make count estimates for the zipf fit,
        by multiplying the fitted pmf value by the sum of counts above xmin.
        :return: array of count values following the fitted pmf.
        """
        # TODO: Limit from above xmin to below xmax, not just above xmin.
        counts = vocab_counts_df[CNT]
        self.uniq_counts = list(pd.unique(counts))
        self.uniq_ranks = list(np.arange(1, len(self.uniq_counts) + 1))
        logs.info(self.uniq_counts)
        logs.info(self.xmin)
        logs.info(self.xmax)
        # Makes sure they are ints if not None
        xmin = self.get_xmin()
        xmax = self.get_xmax()
        self.uniq_fit_counts = self.uniq_counts[xmin + 1 : xmax]
        pmf_mass = float(sum(self.uniq_fit_counts))
        zipf_counts = np.array(
            [self.estimate_count(rank, pmf_mass) for rank in self.uniq_ranks]
        )
        return zipf_counts

    def estimate_count(self, rank, pmf_mass):
        return int(round(zipf_lib.pmf(rank, self.alpha) * pmf_mass))

    def set_unique_ranks(self, ranks):
        self.uniq_ranks = ranks

    def get_unique_ranks(self):
        return self.uniq_ranks

    def get_unique_fit_counts(self):
        return self.uniq_fit_counts

    def set_unique_counts(self, counts):
        self.uniq_counts = counts

    def get_unique_counts(self):
        return self.uniq_counts

    def set_axes(self, unique_counts, unique_ranks):
        self.uniq_counts = unique_counts
        self.uniq_ranks = unique_ranks

    # TODO: Incorporate this function (not currently using)
    def fit_others(self, fit):
        st.markdown(
            "_Checking log likelihood ratio to see if the data is better explained by other well-behaved distributions..._"
        )
        # The first value returned from distribution_compare is the log likelihood ratio
        better_distro = False
        trunc = fit.distribution_compare("power_law", "truncated_power_law")
        if trunc[0] < 0:
            st.markdown("Seems a truncated power law is a better fit.")
            better_distro = True

        lognormal = fit.distribution_compare("power_law", "lognormal")
        if lognormal[0] < 0:
            st.markdown("Seems a lognormal distribution is a better fit.")
            st.markdown("But don't panic -- that happens sometimes with language.")
            better_distro = True

        exponential = fit.distribution_compare("power_law", "exponential")
        if exponential[0] < 0:
            st.markdown("Seems an exponential distribution is a better fit. Panic.")
            better_distro = True

        if not better_distro:
            st.markdown("\nSeems your data is best fit by a power law. Celebrate!!")