File size: 1,873 Bytes
e8c2dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import streamlit as st
import json
import pandas as pd
import plotly.express as px
import numpy as np

with open('carbon-models-2.json', 'r') as fp:
    carbondict= json.load(fp)

models= [k.split('/')[1] for k in carbondict.keys()]
carbon = [v[1] for v in carbondict.values()]
carbon = [4009.5 if x== '4' else x for x in carbon]
tasks = [v[0] for v in carbondict.values()]
tasks = ["other" if len(x) < 2 else x for x in tasks]

carbon_df = pd.DataFrame(
    {'name': models,
     'task': tasks,
     'carbon': carbon
    })

carbon_df.drop(carbon_df.loc[carbon_df['task']=='other'].index, inplace=True)

st.set_page_config(
    page_title="Comparing the Carbon Footprint of Transformers",
    page_icon="./hf-earth.png",
    layout="wide",
)

st.title("Hugging Face Carbon Compare Tool")


# Get the sidebar details
with st.sidebar.expander("Models", expanded=True):
    st.image('./hf-earth.png')
    # choose a dataset to analyze
    model_name = st.selectbox(
        f"Choose model to explore:",
        models)


fig = px.box(carbon_df, x=carbon_df['task'], y=carbon_df['carbon'], color='task', hover_name=carbon_df['name'])
#fig.update_traces(quartilemethod="exclusive") # or "inclusive", or "linear" by default
st.plotly_chart(fig, use_container_width=True)