Spaces:
Runtime error
Runtime error
File size: 10,637 Bytes
96c927a 67cbe97 96c927a 6946674 96c927a b3e0cbc 67cbe97 96c927a 98ea09a 96c927a b3e0cbc 67cbe97 6946674 96c927a b3e0cbc 67cbe97 b3e0cbc 67cbe97 6946674 67cbe97 96c927a 3857ed1 9087427 b3e0cbc 67cbe97 3857ed1 67cbe97 c413f97 67cbe97 b3e0cbc 96c927a 98ea09a 96c927a 331e32b 98ea09a 331e32b 96c927a 98ea09a 96c927a 331e32b 96c927a 6946674 f59d8c0 96c927a 331e32b 96c927a 331e32b 96c927a 339973c 96c927a 339973c 98ea09a 339973c 96c927a 331e32b 96c927a 331e32b 96c927a f59d8c0 331e32b 67cbe97 c413f97 bc15a99 c413f97 67cbe97 c413f97 67cbe97 b3e0cbc 6946674 c413f97 b3e0cbc 6946674 bc15a99 6946674 bc15a99 6946674 f59d8c0 6132304 b3e0cbc dd24c08 b3e0cbc 6132304 b3e0cbc 96c927a b3e0cbc c413f97 96c927a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import io
import os
from pathlib import Path
import uvicorn
from fastapi import FastAPI, BackgroundTasks, HTTPException, UploadFile, Depends, status, Request
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from fastapi_utils.tasks import repeat_every
import numpy as np
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
from diffusers.models import AutoencoderKL
from PIL import Image
import gradio as gr
import skimage
import skimage.measure
from utils import *
import boto3
import magic
import sqlite3
import requests
import uuid
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET_KEY = os.getenv('AWS_SECRET_KEY')
AWS_S3_BUCKET_NAME = os.getenv('AWS_S3_BUCKET_NAME')
LIVEBLOCKS_SECRET = os.environ.get("LIVEBLOCKS_SECRET")
HF_TOKEN = os.environ.get("API_TOKEN") or True
FILE_TYPES = {
'image/png': 'png',
'image/jpeg': 'jpg',
}
DB_PATH = Path("rooms.db")
app = FastAPI()
if not DB_PATH.exists():
print("Creating database")
print("DB_PATH", DB_PATH)
db = sqlite3.connect(DB_PATH)
with open(Path("schema.sql"), "r") as f:
db.executescript(f.read())
db.commit()
db.close()
def get_db():
db = sqlite3.connect(DB_PATH, check_same_thread=False)
db.row_factory = sqlite3.Row
print("Connected to database")
try:
yield db
except Exception:
db.rollback()
finally:
db.close()
s3 = boto3.client(service_name='s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_KEY)
try:
SAMPLING_MODE = Image.Resampling.LANCZOS
except Exception as e:
SAMPLING_MODE = Image.LANCZOS
blocks = gr.Blocks().queue()
model = {}
STATIC_MASK = Image.open("mask.png")
def get_model():
if "inpaint" not in model:
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema")
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
vae=vae,
).to("cuda")
# lms = LMSDiscreteScheduler(
# beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
# img2img = StableDiffusionImg2ImgPipeline(
# vae=text2img.vae,
# text_encoder=text2img.text_encoder,
# tokenizer=text2img.tokenizer,
# unet=text2img.unet,
# scheduler=lms,
# safety_checker=text2img.safety_checker,
# feature_extractor=text2img.feature_extractor,
# ).to("cuda")
# try:
# total_memory = torch.cuda.get_device_properties(0).total_memory // (
# 1024 ** 3
# )
# if total_memory <= 5:
# inpaint.enable_attention_slicing()
# except:
# pass
model["inpaint"] = inpaint
# model["img2img"] = img2img
return model["inpaint"]
# model["img2img"]
# init model on startup
get_model()
def run_outpaint(
input_image,
prompt_text,
strength,
guidance,
step,
fill_mode,
):
inpaint = get_model()
sel_buffer = np.array(input_image)
img = sel_buffer[:, :, 0:3]
mask = sel_buffer[:, :, -1]
nmask = 255 - mask
process_size = 512
if nmask.sum() < 1:
print("inpaiting with fixed Mask")
mask = np.array(STATIC_MASK)[:, :, 0]
img, mask = functbl[fill_mode](img, mask)
init_image = Image.fromarray(img)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
mask_image = Image.fromarray(mask)
elif mask.sum() > 0:
print("inpainting")
img, mask = functbl[fill_mode](img, mask)
init_image = Image.fromarray(img)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
mask_image = Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
else:
print("text2image")
print("inpainting")
img, mask = functbl[fill_mode](img, mask)
init_image = Image.fromarray(img)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
mask_image = Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
with autocast("cuda"):
output = inpaint(
prompt=prompt_text,
image=init_image.resize(
(process_size, process_size), resample=SAMPLING_MODE
),
mask_image=mask_image.resize((process_size, process_size)),
strength=strength,
num_inference_steps=step,
guidance_scale=guidance,
)
return output['images'][0], output["nsfw_content_detected"][0]
with blocks as demo:
with gr.Row():
with gr.Column(scale=3, min_width=270):
sd_prompt = gr.Textbox(
label="Prompt", placeholder="input your prompt here", lines=4
)
with gr.Column(scale=2, min_width=150):
sd_strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01
)
with gr.Column(scale=1, min_width=150):
sd_step = gr.Number(label="Step", value=50, precision=0)
sd_guidance = gr.Number(label="Guidance", value=7.5)
with gr.Row():
with gr.Column(scale=4, min_width=600):
init_mode = gr.Radio(
label="Init mode",
choices=[
"patchmatch",
"edge_pad",
"cv2_ns",
"cv2_telea",
"gaussian",
"perlin",
],
value="patchmatch",
type="value",
)
model_input = gr.Image(label="Input", type="pil", image_mode="RGBA")
proceed_button = gr.Button("Proceed", elem_id="proceed")
model_output = gr.Image(label="Output")
is_nsfw = gr.JSON()
proceed_button.click(
fn=run_outpaint,
inputs=[
model_input,
sd_prompt,
sd_strength,
sd_guidance,
sd_step,
init_mode,
],
outputs=[model_output, is_nsfw],
)
blocks.config['dev_mode'] = False
app = gr.mount_gradio_app(app, blocks, "/gradio",
gradio_api_url="http://0.0.0.0:7860/gradio/")
def generateAuthToken():
response = requests.get(f"https://liveblocks.io/api/authorize",
headers={"Authorization": f"Bearer {LIVEBLOCKS_SECRET}"})
if response.status_code == 200:
data = response.json()
return data["token"]
else:
raise Exception(response.status_code, response.text)
def get_room_count(room_id: str, jwtToken: str = ''):
response = requests.get(
f"https://liveblocks.net/api/v1/room/{room_id}/users", headers={"Authorization": f"Bearer {jwtToken}", "Content-Type": "application/json"})
if response.status_code == 200:
res = response.json()
if "data" in res:
return len(res["data"])
else:
return 0
raise Exception("Error getting room count")
@app.on_event("startup")
@repeat_every(seconds=60)
async def sync_rooms():
print("Syncing rooms")
try:
jwtToken = generateAuthToken()
for db in get_db():
rooms = db.execute("SELECT * FROM rooms").fetchall()
for row in rooms:
room_id = row["room_id"]
users_count = get_room_count(room_id, jwtToken)
cursor = db.cursor()
cursor.execute(
"UPDATE rooms SET users_count = ? WHERE room_id = ?", (users_count, room_id))
db.commit()
except Exception as e:
print(e)
print("Rooms update failed")
@app.get('/api/rooms')
async def get_rooms(db: sqlite3.Connection = Depends(get_db)):
rooms = db.execute("SELECT * FROM rooms").fetchall()
return rooms
@app.post('/api/auth')
async def autorize(request: Request, db: sqlite3.Connection = Depends(get_db)):
data = await request.json()
room = data["room"]
payload = {
"userId": str(uuid.uuid4()),
"userInfo": {
"name": "Anon"
}}
response = requests.post(f"https://api.liveblocks.io/v2/rooms/{room}/authorize",
headers={"Authorization": f"Bearer {LIVEBLOCKS_SECRET}"}, json=payload)
if response.status_code == 200:
# user in, incremente room count
# cursor = db.cursor()
# cursor.execute(
# "UPDATE rooms SET users_count = users_count + 1 WHERE room_id = ?", (room,))
# db.commit()
sync_rooms()
return response.json()
else:
raise Exception(response.status_code, response.text)
@app.post('/api/uploadfile')
async def create_upload_file(background_tasks: BackgroundTasks, file: UploadFile):
contents = await file.read()
file_size = len(contents)
if not 0 < file_size < 20E+06:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail='Supported file size is less than 2 MB'
)
file_type = magic.from_buffer(contents, mime=True)
if file_type.lower() not in FILE_TYPES:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f'Unsupported file type {file_type}. Supported types are {FILE_TYPES}'
)
temp_file = io.BytesIO()
temp_file.write(contents)
temp_file.seek(0)
s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key="uploads/" +
file.filename, ExtraArgs={"ContentType": file.content_type, "CacheControl": "max-age=31536000"})
temp_file.close()
return {"url": f'https://d26smi9133w0oo.cloudfront.net/uploads/{file.filename}', "filename": file.filename}
app.mount("/", StaticFiles(directory="../static", html=True), name="static")
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860,
log_level="debug", reload=False)
|