File size: 4,339 Bytes
96c927a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from PIL import Image
from PIL import ImageFilter
import cv2
import numpy as np
import scipy
import scipy.signal
from scipy.spatial import cKDTree

import os
from perlin2d import *

patch_match_compiled = True

from PyPatchMatch import patch_match


def edge_pad(img, mask, mode=1):
    if mode == 0:
        nmask = mask.copy()
        nmask[nmask > 0] = 1
        res0 = 1 - nmask
        res1 = nmask
        p0 = np.stack(res0.nonzero(), axis=0).transpose()
        p1 = np.stack(res1.nonzero(), axis=0).transpose()
        min_dists, min_dist_idx = cKDTree(p1).query(p0, 1)
        loc = p1[min_dist_idx]
        for (a, b), (c, d) in zip(p0, loc):
            img[a, b] = img[c, d]
    elif mode == 1:
        record = {}
        kernel = [[1] * 3 for _ in range(3)]
        nmask = mask.copy()
        nmask[nmask > 0] = 1
        res = scipy.signal.convolve2d(
            nmask, kernel, mode="same", boundary="fill", fillvalue=1
        )
        res[nmask < 1] = 0
        res[res == 9] = 0
        res[res > 0] = 1
        ylst, xlst = res.nonzero()
        queue = [(y, x) for y, x in zip(ylst, xlst)]
        # bfs here
        cnt = res.astype(np.float32)
        acc = img.astype(np.float32)
        step = 1
        h = acc.shape[0]
        w = acc.shape[1]
        offset = [(1, 0), (-1, 0), (0, 1), (0, -1)]
        while queue:
            target = []
            for y, x in queue:
                val = acc[y][x]
                for yo, xo in offset:
                    yn = y + yo
                    xn = x + xo
                    if 0 <= yn < h and 0 <= xn < w and nmask[yn][xn] < 1:
                        if record.get((yn, xn), step) == step:
                            acc[yn][xn] = acc[yn][xn] * cnt[yn][xn] + val
                            cnt[yn][xn] += 1
                            acc[yn][xn] /= cnt[yn][xn]
                            if (yn, xn) not in record:
                                record[(yn, xn)] = step
                                target.append((yn, xn))
            step += 1
            queue = target
        img = acc.astype(np.uint8)
    else:
        nmask = mask.copy()
        ylst, xlst = nmask.nonzero()
        yt, xt = ylst.min(), xlst.min()
        yb, xb = ylst.max(), xlst.max()
        content = img[yt : yb + 1, xt : xb + 1]
        img = np.pad(
            content,
            ((yt, mask.shape[0] - yb - 1), (xt, mask.shape[1] - xb - 1), (0, 0)),
            mode="edge",
        )
    return img, mask


def perlin_noise(img, mask):
    lin = np.linspace(0, 5, mask.shape[0], endpoint=False)
    x, y = np.meshgrid(lin, lin)
    avg = img.mean(axis=0).mean(axis=0)
    # noise=[((perlin(x, y)+1)*128+avg[i]).astype(np.uint8) for i in range(3)]
    noise = [((perlin(x, y) + 1) * 0.5 * 255).astype(np.uint8) for i in range(3)]
    noise = np.stack(noise, axis=-1)
    # mask=skimage.measure.block_reduce(mask,(8,8),np.min)
    # mask=mask.repeat(8, axis=0).repeat(8, axis=1)
    # mask_image=Image.fromarray(mask)
    # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 4))
    # mask=np.array(mask_image)
    nmask = mask.copy()
    # nmask=nmask/255.0
    nmask[mask > 0] = 1
    img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
    # img=img.astype(np.uint8)
    return img, mask


def gaussian_noise(img, mask):
    noise = np.random.randn(mask.shape[0], mask.shape[1], 3)
    noise = (noise + 1) / 2 * 255
    noise = noise.astype(np.uint8)
    nmask = mask.copy()
    nmask[mask > 0] = 1
    img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
    return img, mask


def cv2_telea(img, mask):
    ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_TELEA)
    return ret, mask


def cv2_ns(img, mask):
    ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_NS)
    return ret, mask


def patch_match_func(img, mask):
    ret = patch_match.inpaint(img, mask=255 - mask, patch_size=3)
    return ret, mask


def mean_fill(img, mask):
    avg = img.mean(axis=0).mean(axis=0)
    img[mask < 1] = avg
    return img, mask


functbl = {
    "gaussian": gaussian_noise,
    "perlin": perlin_noise,
    "edge_pad": edge_pad,
    "patchmatch": patch_match_func if (os.name != "nt" and patch_match_compiled) else edge_pad,
    "cv2_ns": cv2_ns,
    "cv2_telea": cv2_telea,
    "mean_fill": mean_fill,
}